K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

a) Xét tam giác HEA và tam giác HDB có: \(\angle HEA=\angle HDB=90^o;\angle AHE=\angle BHD(\text{đối đỉnh})\).

Do đó \(\Delta HEA\sim\Delta HDB\left(g.g\right)\).

b) Xét tam giác CKD và CDA có \(\angle CKD=\angle CDA=90^o;\widehat{C}-\text{góc chung}\).

Do đó \(\Delta CKD\sim\Delta CDA\left(g.g\right)\) nên \(\dfrac{CD}{CK}=\dfrac{CA}{CD}\Rightarrow CD^2=CA.CK\).

b) Gọi G là trung điểm của DK.

Do GN là đường trung bình của tam giác KDC nên GN // DC. Suy ra GN vuông góc với AD.

Mà DG vuông góc với AC nên G là trực tâm của tam giác ADN.

Suy ra AG vuông góc với DN. Mà FK // AG (Do AG là đường trung bình của tam giác DFK) nên FK vuông góc với DN.

a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔHEA\(\sim\)ΔHEB(g-g)

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:
a) Xét tam giác $HEA$ và $HDB$ có:

$\widehat{HEA}=\widehat{HDB}=90^0$

$\widehat{EHA}=\widehat{DHB}$ (đối đỉnh)

$\Rightarrow \triangle HEA\sim \triangle HDB$ (g.g)

b) Xét tam giác $CKD$ và $CDA$ có:

$\widehat{C}$ chung

$\widehat{CKD}=\widehat{CDA}=90^0$ 

$\Rightarrow \triangle CKD\sim \triangle CDA$ (g.g)

$\Rightarrow \frac{CK}{CD}=\frac{CD}{CA}\Rightarrow CD^2=CK.CA$ (đpcm)

c) Xét tam giác $ADK$ và $DCK$ có:

$\widehat{AKD}=\widehat{DKC}=90^0$

$\widehat{ADK}=\widehat{DCK}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \triangle ADK\sim \triangle DCK$ (g.g)

$\Rightarrow \frac{AD}{DC}=\frac{DK}{CK}\Leftrightarrow \frac{FD}{2DC}=\frac{DK}{2CN}$

$\Rightarrow \frac{FD}{DC}=\frac{DK}{CN}$

Tam giác $FDK$ và $DCN$ đồng dạng với nhau do:

$\frac{FD}{DC}=\frac{DK}{CN}$ (cmt)

$\widehat{FDK}=\widehat{DCN}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \frac{DFK}=\widehat{CDN}$

$\Rightarrow \widehat{DFK}+\widehat{FDN}=\widehat{CDN}+\widehat{FDN}$

$\Leftrightarrow 180^0-\widehat{FSD}=\widehat{FDC}=90^0$

$\Rightarrow \widehat{FSD}=90^0$ nên ta có đpcm.

 

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Hình vẽ:

undefined

a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔHEA\(\sim\)ΔHDB(g-g)

23 tháng 3 2021

giúp mik câu c với

 

18 tháng 4 2021

Lấy Q là trung điểm DS, AQ // FS

=> HQ // KS (H thuộc AQ, K thuộc FS)

Ta có

          HQ // KS (cmt)

          Q là trung điểm DS (gt)

  => H là trung điểm DK

Xét △DKC có

                 H là trung điểm DK (cmt)

                 N là trung điểmm KC (gt)

  => HN là đường trung bình △DKC

=> HN // DC (tính chất đường trung bình)

Vì AD ⊥ DC (đường cao AD)

=> HN ⊥ AD

Xét △DAN có

  

 

18 tháng 4 2021

c) Lấy điểm Q là trung điểm DS

Vì  AF = AD (gt)

=> A là trung điểm FD

Xét △FDS có

     A là trung điểm FD (cmt)

     Q là trung điểm DS (gt)

=> AQ là đường trung bình △FDS

=> AQ // FS (tính chất đường trung bình)

=> HQ // KS ( H thuộc AQ, K thuộc FS)

Ta có  

     HQ // KS (cmt)

     Q là trung điểm DS (gt)

  => H là trung điểm DK

Xét △DKC có

          H là trung điểm DK (cmt)

          N là trung điểm KC (gt)

  => HN là đường trung bình △DKC

=> HN // DC ( tính chất đường trung bình)

Vì DC ⊥ AD (đường cao AD)

=> HN ⊥ AD

Ta có DK ⊥ AC (gt)

Mà N thuộc AC

=> DK ⊥ AN

Xét △DAN có

         DK là đường cao thứ nhất (DK ⊥ AN)

         HN là đường cao thứ hai (HN ⊥ AD)

         HN và DK cắt nhau tại H

  => H là trực tâm △DAN

Mà AQ đi qua trực tâm H

=> AQ là đường cao thứ 3

=> AQ ⊥ DN

Vì AQ // FS (cmt)

=> FS ⊥ DN

24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD 

30 tháng 4 2021

undefined

30 tháng 4 2021

undefined

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@