tim x bix
lx-1l+lx-4l=3x
lx+1l+lx+4l=3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tương tự như bài hồi chiều,xét 3 khoảng:
+ nếu x bé hơn -4
+ nếu -4 bé hơn hoặc bằng x bé hơn -1
+nếu x lớn hơn hoặc bằng -1
Xét 3 trường hợp
TH1: \(x\le1\)
<=> 1-x+4-x=3x
<=> x=1 (loại)
TH2 : 1<x<4
<=> x-1+4-x=3x
<=> x=1(thỏa mãn)
TH3: \(x\ge4\)
<=> x-1+x-4=3x
<=> x=-5 (loại)
Vậy x= 1
Làm tắt cho nên bạn tự hiểu nhé
1: |1-5x|-1=3
=>|5x-1|=4
=>5x-1=4 hoặc 5x-1=-4
=>5x=5 hoặc 5x=-3
=>x=1 hoặc x=-3/5
2: 4|2x-1|+3=15
=>4|2x-1|=12
=>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
3,\(\left|x+4\right|=2x+1\)
TH1: x+4≥0⇔x≥-4,pt có dạng:
x+4=2x+1⇔-x=-3⇔x=3(t/m)
TH2:x+4<0⇔x<-4,pt có dạng:
-x-4=2x+1⇔-3x=5⇔x=\(\dfrac{-5}{3}\)(loại)
Vậy pt đã cho có tập nghiệm S=\(\left\{3\right\}\)
4,\(\left|3x+4\right|=x-3\)
TH1: 3x-4≥0⇔3x≥4⇔x≥\(\dfrac{4}{3}\),pt có dạng:
3x-4=x-3⇔2x=1⇔x=\(\dfrac{1}{2}\)(loại)
TH2: 3x-4<0⇔3x<4⇔x<\(\dfrac{4}{3}\),pt có dạng:
-3x+4=x-3⇔-4x=-7 ⇔x=1,75(loại)
Vậy pt đã cho vô nghiệm
Lập bảng xét dấu là ra thôi bài này dễ mà
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
11: |2x-3|-1/3=0
=>|2x-3|=1/3
=>\(\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{10}{3}\\2x=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
12: \(\dfrac{5}{6}-\left|x+\dfrac{1}{4}\right|=\dfrac{1}{4}\)
=>\(\left|x+\dfrac{1}{4}\right|=\dfrac{5}{6}-\dfrac{1}{4}=\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{7}{12}\)
=>\(\left[{}\begin{matrix}x+\dfrac{1}{4}=\dfrac{7}{12}\\x+\dfrac{1}{4}=-\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{11}{12}\end{matrix}\right.\)
13: \(\left|x-1\right|-2x=\dfrac{1}{2}\)
=>\(\left|x-1\right|=2x+\dfrac{1}{2}\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(2x+\dfrac{1}{2}\right)^2=\left(x-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(2x+\dfrac{1}{2}-x+1\right)\left(2x+\dfrac{1}{2}+x-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(x+\dfrac{3}{2}\right)\left(3x-\dfrac{1}{2}\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)
14: \(3x-\left|x+15\right|=\dfrac{5}{4}\)
=>\(\left|x+15\right|=3x-\dfrac{5}{4}\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(3x-\dfrac{5}{4}\right)^2=\left(x+15\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(3x-\dfrac{5}{4}-x-15\right)\left(3x-\dfrac{5}{4}+x+15\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(2x-16.25\right)\left(4x+\dfrac{55}{4}\right)=0\end{matrix}\right.\)
=>\(x=8.125\)