Tính hợp lý:
\(C=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{98.99.100}\)
\(S=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+................+\dfrac{2}{98.99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)
\(S=\dfrac{1}{2}.\dfrac{4949}{9900}\)
\(S=\dfrac{4949}{19800}\)
~ Chúc bn học tốt ~
E=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
* Áp dụng công thức: \(\dfrac{k}{n.\left(n+k\right)}\)=\(\dfrac{1}{n}-\dfrac{1}{n+k}\)
ta có : \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-....+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)
E=\(\dfrac{1}{1.2}-\dfrac{1}{99.100}\)
E= ........(tính ra)
* Chứng tỏ
Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)
= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)
= \(\dfrac{4849}{19800}\)
a) Ta có: \(3xy+x-3y=6\)
\(\Rightarrow x\left(3y+1\right)-3y=6\)
\(\Rightarrow x\left(3y+1\right)-\left(3y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(3y+1\right)=5\)
Ta có bảng sau:
....
b) Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)
\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\left(đpcm\right)\)
Vậy...
\(S=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{98\cdot99\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\\ =\dfrac{1}{2}\cdot\dfrac{4949}{9900}\\ =\dfrac{4949}{19800}\)
\(A=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}\)
\(A=\left(\dfrac{-9-2-7}{18}\right)+\left(\dfrac{21+4+10}{35}\right)+\dfrac{1}{127}\)
\(A=-1+1+\dfrac{1}{127}\)
\(A=\dfrac{1}{127}\)
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.4}+\dfrac{1}{3.4.5.4}+...+\dfrac{1}{98.99.100.4}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.\left(5-1\right)}+\dfrac{1}{3.4.5.\left(6-2\right)}+...+\dfrac{1}{98.99.100.\left(101-97\right)}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5-1.2.3.4}+\dfrac{1}{3.4.5.6-2.3.4.5}+...+\dfrac{1}{98.99.100.101-97.98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}-\dfrac{1}{1.2.3.4}+\dfrac{1}{3.4.5.6}-\dfrac{1}{2.3.4.5}+...+\dfrac{1}{98.99.100.101}-\dfrac{1}{97.98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{98.99.100.101}\)
\(B=\dfrac{1}{98.99.100.101}.4=\dfrac{1}{98.99.25.101}\)
tick cho mk nha
bài tự làm 100%
co gì chưa đc thì coi lại nha
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{37.38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1482}\right)\)
\(A=\dfrac{1}{2}.\dfrac{370}{741}=\dfrac{185}{741}\)
\(2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{98.99.100}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{50.99-1}{100.99}=\dfrac{4949}{9900}\)
`A=1/[1.2.3]+1/[2.3.4]+....+1/[98.99.100]`
`A=1/2.(2/[1.2.3]+2/[2.3.4]+....+2/[98.99.100])`
`A=1/2.(1/[1.2]-1/[2.3]+1/[2.3]-1/[3.4]+....+1/[98.99]-1/[99.100])`
`A=1/2.(1/[1.2]-1/[99.100])`
`A=1/2.(1/2-1/9900)`
`A=1/2.(4950/9900-1/9900)`
`A=1/2 . 4949/9900`
`A=4949/19800`