Tìm 2 chữ số a, b để 1980ab là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 1980ab = k2 ; k nguyên
ab là số có 2 chữ số => 198000 \(\le\) k2 \(\le\) 198099
=> \(\sqrt{198000}\le k\le\sqrt{198099}\) => 444,9 \(\le\) k \(\le\) 445, 08
=> k = 445
=> 1980ab = 4452 = 198025 => ab = 25
Câu a là a=2 b=5
Còn câu B mình không biết nha
Chúc cấc bạn học giỏi
a,Đặt \(\overline{1980ab}=k^2\)\(\left(k\in Z\right)\)
Vì ab là số có 2 chữ số \(\Rightarrow198000\le k^2\le198099\)
\(\Rightarrow\sqrt{198000}\le k\le\sqrt{198099}\)
\(\Rightarrow444,971...\le k\le445,08...\)
\(\Rightarrow k=445\)
\(\Rightarrow\overline{1980ab}=k^2=445^2=198025\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=5\end{cases}}\)
Vậy số cần tìm là \(198025\)
b, Đặt \(\overline{1978cd}=t^2\) \(\left(t\in Z\right)\)
Vì cd là số có 2 chữ số \(\Rightarrow197800\le t^2\le197899\)
\(\Rightarrow\sqrt{197800}\le t\le\sqrt{197899}\)
\(\Rightarrow444,74...\le t\le445\)
\(\Rightarrow t=445\)
Mà \(t^2=445^2=198025\ne\overline{1978cd}\)
Vậy không có giá trị nào của c,d thỏa mãn \(\overline{1978cd}\)là số chính phương
Đặt 1980ab = x2 với x∈N.
Do 0 ≤ ab ≤ 99 nên 198000 ≤ 1980ab ≤198099 ⇔198000 ≤ x2 ≤ 198099
⇔ 444,97 ≤ x ≤ 445,08.
⇒ x = 445 ⇒x2 = 198025 ⇒ 1980ab =198025 ⇒ab = 25