Cho mình hỏi nha các bạn??
tìm x,y,z biết:
3x=2y=4z và y-x+z = 2015
Thanks các bạn nhều nha,ai làm đầy đủ vs đúng và nhanh mik k cho~!! mai mình p nộp rồi!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{3x}{6}=\dfrac{4z}{16}=\dfrac{3x+y+4z}{6+3+16}=\dfrac{18}{25}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{18.2}{25}=\dfrac{36}{25}\\y=\dfrac{18.3}{25}=\dfrac{54}{25}\\z=\dfrac{18.4}{25}=\dfrac{72}{25}\end{matrix}\right.\)
xy+x-2y=5
<=>xy-2y+x=5
<=>y(x-2)+x-2=5-2
<=>y(x-2)+(x-2)=3
<=>(y-1)(x-2)=3
tới đây tự làm tiếp
Ta có: x.y+x-2y = 5
=> x.(y+1)-2y = 5
=> x.(y+1)-2y-2 = 3
=> x.(y+1)-2.(y+1) = 3
=> (x-2).(y+1) = 3
Lập bảng tìm x;y
x - 2 | -3 | -1 | 1 | 3 |
y + 1 | -1 | -3 | 3 | 1 |
x | -1 | 1 | 3 | 5 |
y | -2 | -4 | 2 | 0 |
Vậy x; y là: (-1;-2);(1;-4);(3;2);(5;0)
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~
Câu trả lời hay nhất: từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31
nên x= 93 , y= 155 , z= -62
thân mên
long
đặng hoàng long
a) Ta có 3x = 2y = z
=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)
b) 6x = 10y = 15z
=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)
=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)
c) 6x = 4y = 2z
=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)
=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)
d) x = 3y = 2z
=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)
=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)
=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)
a.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{15+5+3}=\frac{10}{23}\) [theo tính chất của dãy tỉ số bằng nhau]
=> x = 10/23 * 15 = 150/23
y = 10/23 * 5 = 50/23
z = 10/23 * 93 = 30/23
b.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{2x}{30}=\frac{3y}{15}=\frac{z}{3}=\frac{2x-3y+z}{30-15+3}=\frac{32}{18}=\frac{16}{9}\)[theo tính chất của dãy tỉ số bằng nhau]
=> 2x = 16/9 * 30 = 160/3 => x = 80/3
3y = 16/9 * 15 = 80/3 => y = 80/9
z = 16/9 * 3 = 48/9
c.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{x}{15}=\frac{2y}{10}=\frac{3z}{9}=\frac{x+2y-3z}{15+10-9}=\frac{14}{16}=\frac{7}{8}\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = 7/8 * 15 = 105/8
2y = 7/8 * 10 = 70/8 => y = 35/8
3z = 7/8 * 9 = 63/8 => z = 21/8
xy -1 = 3x+5y+4
<=> xy -3x-5y=5
<=>xy-3x-5y+15=20
<=>x(y-3)-5(y-3)=20
<=> (x-5)(y-3) =20
Vì x,y E Z và (x-5)(y-3)=20
=> (x-5),(y-3) E Ư(20)={+1;+2;+4;+5;+10;+20}
Ta có bảng sau
x-5 -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
y-3 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
x -15 -5 0 1 3 4 6 7 9 10 15 25
y 2 1 -1 -2 -7 -17 23 13 8 7 5 4
Do x,y E Z => (x;y) E { (-15;2);(-5;1);(0;-1);(1;-2);(3;-7);(4;-17);(6;23);(7;13);(9;8);(10;7);(15;5);(25;4)} (thỏa mãn)
KL:...