Tìm số tự nhiên a biết rằng khi chia 100 cho a thì dư 10 và chia 140 cho a thì dư 20, a < 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 111 chia a dư 15; 180 chia a dư 20
nên 111 - 15 chia hết cho a; 180 - 20 chia hết cho a
=> 96 chia hết cho a; 160 chia hết cho a
=> a thuộc ƯC(96;160)
Mà ƯCLN(96;160) = 32
=> a thuộc Ư(32)
Mà a > 20 (vì số chia > số dư) => a = 32
Gọi x và y lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là số tự nhiên)
Ta có: a = 4x + 3 => 27a = 108x + 81 (1)
a = 9y + 5 => 28a = 252y + 140 (2) (Cùng nhân với 28)
Lấy (2) trừ (1) ta được: 28a - 27a = 36.(7c - 3b) + 59
\(\Leftrightarrow\) a = 36. (7c - 3b + 1) + 23
Vậy a chia cho 36 dư 23.
- Ta có : a chia 4 dư 3 `=> a=4k+3 (k in NN)`
- Ta lại có : a chia 9 dư 5 `=> a-5vdots9`
`=> 4k+3-5vdots9`
`=> 4k-2vdots9`
`=> 4k-2-18 vdots9`
`=> 4k-20vdots9`
`=> 4(k-5)vdots9`
mà (4;5)=1
`=> k-5vdots9`
`=> k-5=9m (m in NN)`
`=> k=9m+5`
- Thay `k=9m+5` vào biểu thức `a=4k+3` ta có :
`a=4.(9m+5)+3`
`-> a=36m+20+3`
`-> a=36m+23`
- Vậy a chia 36 dư 23
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
vị 350 : a thí dụ 14 nên (350-24) chia hết cho a suy ra 350-14=336 chia het cho a
vi 220 : a thì du 10 nen (220-10) chia het cho a suy ra 220-10 =210 chia het cho a
suy ra a thuoc UCLN (336;210)
ta co: 336=2^4.3.7
210=2.3.5.7
vay UCLN(336;210)=2.3.7=42
vậy a = 42