K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

-Đề sai.

Giả sử \(x=\dfrac{1}{3};y=\dfrac{2}{3};z=1\Rightarrow x+y+z=2\)

\(\dfrac{1}{3}.\dfrac{2}{3}+2.\dfrac{2}{3}.1+2.1.\dfrac{1}{3}=\dfrac{20}{9}< 3\)

13 tháng 5 2022

cmr: xy+2yz+3zx<=3

31 tháng 8 2021

undefined

2 cái kìa còn lại làm tương tự rồi sau đó cộng lại với nhau sẽ ra 1 số tự nhiên nhé, dễ nên lười đánh nốt lắm :v

1 tháng 9 2021

cam ơn ah. kết quả bằng 3 ah.

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$

Tương tự với $y^2+2zx, z^2+2xy$ thì:

$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$

$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$

8 tháng 12 2021

Ap dụng bất đẳng thức BDT Caucchy Schwarz ta có :

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2zx+z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

6 tháng 8 2020

Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)

\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)

\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)

Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)

Nên thay vào ngược dấu

=> ch bt lm

6 tháng 8 2020

Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.

\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)

Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)

Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)

Tương tự cộng lại. Xong.

Cách Cauchy-SChwarz:

Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)

17 tháng 2 2020

\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)

Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao

khi đó:

\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)

Dấu "=" xảy ra tại x=y=z=1

20 tháng 2 2020

Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)

\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )

Xét 5x - y \(\le\)\(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)\(\Rightarrow\)BĐT đã được chứng minh

Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :

\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)

\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)

\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)

\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)

\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )

( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\)

Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\)\(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)

Cộng từng vế 3 BĐT lại với nhau, ta được : 

\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)

\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)

Dấu "=' xảy ra khi x = y = z = 1

Vậy BĐT đã được chứng minh