Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường kính AD. Gọi H là giao điểm của 2 đường cao BE,CF của tM giác ABC
a) CM: tứ giác BHCD là hình Bình hành
b) Gọi I là trung điểm BC. CM: AH= 2 OI
c) Gọi G là trọng tâm của Tam giác ABC. CM: G là trọng tâm tam giác AHD.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
c: G là trọng tâm
nên AG=2AI
Xét ΔAHD có
AI là trung tuyến
AG=2/3AI
DO đó: G là trọng tâm