Tổng tất cả các chữ số của một số tự nhiên có 3 chữ số là 21. Chữ số hàng đơn vị lớn hơn chữ số hàng chục. Nếu đổi chỗ chữ số hàng đơn vị và chữ số hàng trăm ta sẽ nhận được một số tự nhiên mới lớn hơn số ban đầu 198 đơn vị. Tìm số đã cho. ko bt lm 😅
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Số tự nhiên đó có dạng ¯¯¯¯¯¯¯¯abc(1≤a≤9;0≤b,c≤9;a,b,c∈N)
Theo đề bài ta có: a+b+c=21;c>b;¯¯¯¯¯¯¯¯cba−¯¯¯¯¯¯¯¯abc=198(1)
Hay {a+b+c=2199(c−a)=198⇔{a+b+c=21c−a=2⇒(c−2)+b+c=21
⇔2c+b=23.
Mà ta có: 23=2c+b<3c⇒c>233⇒9≥c≥8 (do c∈\N)
Với c=9
thì b=5 suy ra a=7. Vậy số đó là 759.
Với c=8
thì b=7 suy ra a=6. Vậy số đó là 678
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.
Ta có:
cba - abc = 792
=> (100c + 10b + a) - (100a + 10b + c) = 792
=> 100c + 10b + a - 100a - 10b - c = 792
=> 99c - 99a = 792
=> 99.(c - a) = 792
=> c - a = 792 : 99
=> c - a = 8
Do c là chữ số => c = 8; a = 0 hoặc c = 9; a = 1
Mà c = 3b => c chia hết cho 3 => c = 9; a = 1
=> b = 3
Vậy số cần tìm là 139