Bài 17: Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm,
AC = 8cm
a/ Chứng minh ∆HBA đồng dạng ∆ABC
b/ Tính BC , AH , BH
c/ Gọi I và K lần lượt hình chiếu của điểm H lên cạnh AB, AC.
Chứng minh AI.AB =AK.AC
d/ Tính diện tích hình chữ nhật IHKA
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
BH=3,6(cm)
c: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)