Trên quãng đường AB có địa điểm C cách A là 10km. Lúc 8h , người số 1 và người số 2 rời A , người số 3 rời C , tất cả đi về phía B với vân tốc theo thứ tự là 30km/giờ , 40km/giờ , 20 km/giờ. Hỏi mấy giờ thì người 3 có khoảng cách đến 2 người kia bằng nhau ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có người thứ tư đi chính giữa người thứ nhất và người thứ hai thì người thứ tư phải đi bằng vận tốc trung bình của người thứ nhất và người thứ hai và người thứ tư cũng xuất phát lúc 8 giờ từ A đi về phía B.
Do đó khi người thứ tư gặp người thứ ba cũng đúng là lúc người thứ người thứ ba có khoảng cách đến người thứ nhất và thứ hai bằng nhau.
Bài toán chuyển động cùng chiều:
Vận tốc của người thứ tư (vận tốc trung bình của người thứ nhất và người thứ hai) là:
(30 + 40) : 2 = 35 (km/giờ)
Thời gian để người thứ tư gặp người thứ ba (thời gianngười thứ ba đi chính giữa người thứ nhất và người thứ hai) là:
10 : (35 - 20) = \(\frac{2}{3}\) giờ = 40 phút
Thời điểm người thứ ba đi chính giữa người thứ nhất và người thứ hai là:
8 giờ + 40 phút = 8 giờ 40 phút
Đáp số: 8 giờ 40 phút
Bài này mình vừa làm xong ở Câu hỏi hay :
Giả sử có người thứ tư đi chính giữa người thứ nhất và người thứ hai thì người thứ tư phải đi bằng vận tốc trung bình của người thứ nhất và người thứ hai và người thứ tư cũng xuất phát lúc 8 giờ từ A đi về phía B.
Do đó khi người thứ tư gặp người thứ ba cũng đúng là lúc người thứ người thứ ba có khoảng cách đến người thứ nhất và thứ hai bằng nhau.
Bài toán chuyển động cùng chiều:
Vận tốc của người thứ tư (vận tốc trung bình của người thứ nhất và người thứ hai) là:
(30 + 40) : 2 = 35 (km/giờ)
Thời gian để người thứ tư gặp người thứ ba (thời gianngười thứ ba đi chính giữa người thứ nhất và người thứ hai) là:
10 : (35 - 20) = \(\frac{2}{3}\) giờ = 40 phút
Thời điểm người thứ ba đi chính giữa người thứ nhất và người thứ hai là:
8 giờ + 40 phút = 8 giờ 40 phút
Đáp số: 8 giờ 40 phút
8h40 phút mình chắc 100% luôn