Bài 4 . Cho tam giác ABC vuông tại A, AB = 6cm BC=10cm. a) Tính độ dài cạnh AC b) Gọi H là hình chiếu của A trên BC, trên tia đối của tia HA lấy D sao cho H là trung điểm của AD. Chứng minh rằng: tam giác AHC= tam giác DHC c) Vẽ đường trung tuyến DK của A ADC, DK cắt BC tại M. Gọi N là trung điểm của CD. Chứng minh rằng ba điểm A, M, N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)
b.
Theo đề thì $AD\perp BC$ và $AD\perp BC$ tại trung điểm $H$ của $AD$ nên $BC$ là đường trung trực của $AD$
$\Rightarrow CD=CA$
Xét tam giác $AHC$ và $DHC$ có:
$AH=DH$ (gt)
$HC$ chung
$AC=DC$ (cmt)
$\Rightarrow \triangle AHC=\triangle DHC$ (c.c.c)
a: AC=căn 10^2-6^2=8cm
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
=>ΔAHC=ΔDHC
a AC=8cm
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HA=HD
HC chung
=>ΔAHC=ΔDHC
a: AC=8cm
Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
hay CB=CD
Xét ΔCBD có
DK là đường trung tuyến
CA là đường trung tuyến
DK cắt CA tại M
Do đó: M là trọng tâm
=>AM=AC/2=8/3(cm)
b: Xét ΔCAD có
G là trung điểm của AC
GQ//AD
Do đó: Q là trung điểm của CD
Vì M là trọng tâm của ΔCDB nên B,M,Q thẳng hàng
a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)
Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2
=> AC2=64 (cm) => AC2=82 => AC=8 (cm).
b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD
=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)
c) Nối E với D.
Xét \(\Delta\)AHB và \(\Delta\)EHD:
HB=HD
^AHB=^EHD=900 => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)
HA=HE
=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED
Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)
Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC
=> AD \(⊥\)EC (đpcm)
a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
102 = 62 + AC2
=> AC2 = 100 - 36 = 64
=> AC =8
Sửa đề :
a, Tính độ dài cạnh AC
Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :
\(AB^2+AC^2=BC^2\)
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\)
b, Xét \(\Delta AMC\)và \(\Delta BMD\)có :
\(MB=MA\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\)( 2 góc đối đỉnh )
\(MD=MC\left(gt\right)\)
= > \(\Delta AMC=\Delta DMB\)
= > DB = AC = 8 cm ( 2 cạnh tương ứng )
c, thiếu đề bài
ta có :
c. mình đâu có thấy điểm K nào đâu nhỉ
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có
CH chung
HA=HD
DO đó: ΔHAC=ΔHDC