Tìm tất cả các số có 10 chữ số có chữ số tận cùng là 4 và là lũy thừa bậc năm của 1 số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu một số phân tích ra thành tích các thừa số nguyên tố:a=pt11.pt22...ptkk
thì số các số là ước của số a sẽ là (p1+1)(p2+1)...(pk+1)
Dựa vào nhận xét này, ta suy ra để số a là nhỏ nhất ta suy ra các thừa số nguyên tố có trong phân tích của số a phải là các thừa số từ nhỏ nhất đến lớn nhất có thể
Nhận xét thứ hai là với số có 16 ước ta có các trường hợp sau:
16=1.16=2.8=4.4=2.2.4=2.2.2.2
Với trường hợp 16 = 1.16 thì khi đó số a có dạng là a=\(2^{15}\)=32768
Với trường hợp 16 = 2.8 thì số a khi đó số a có dạng là a=\(2^7.3^1\)=384
Với trường hợp 16 = 4.4 thì khi đó số a có dạng là a=\(2^3.3^3\)=216
Với trường hợp 16 = 2.2.4 thì khi đó số a có dạng là a=\(2^3.3^2.5^1\)=120
Với trường hợp 16 = 2.2.2.2 thì khi đó số a có dạng là a=\(2^1.3^1.5^1.7^1\)=210
Bằng lập luận toán học ta vẫn có thể suy ra số a là 120
Bài toán trở thành tìm chữ số tận cùng của \(92^{120}\)
Ta dễ dàng có được: \(92^{120}=92^{4.30}=\left(92^4\right)^{30}=\left(....6\right)^{30}=...6\)
Chúc bạn học tốt
Câu 1: số 50
Câu 2: số 5
Câu 3: mình chịu hihi
Câu 4: x=10
Mình cũng chưa hiểu lắm! Để mình nghĩ đã! Mình là học sinh chuyên Toán nên sẽ nghĩ ra sơm thôi! Đợi chút nhé
1)
Xét 2004 số đề kết thúc là 4 chữ số 2002 :
20022002; 200220022002 ; ...; 20022002...2002
| 2005 cụm 2002 |
Có 2004 số; mà khi chia cho 2003 chỉ có thể có 2003 số dư nên theo nguyên lý Đi-ríc-lê; có ít nhất hai số có cùng số dư khi chia cho 2003; thì hiệu chúng sẽ là bội của 2003.
Gọi 2 số đó là 20022002...2002; 200220022002...2002
| n cụm 2002 | |m cụm 2002| \(\left(2\le n< m\le2005\right)\)và m,n là các số tự nhiên.
Suy ra :
200220022002...2002 - 20022002...2002 chia hết cho 2003
| m cụm 2002 | | n cụm 2002 |
= 20022002...200220020000000...0000 chia hết cho 2003
| m - n cụm 2002 | | 4n chữ số 0 |
\(\Rightarrow200220022002...2002.10^{4n}\) chia hết cho 2003
| m - n cụm 2002 |
Mà (10;2003) = 1 nên (104n;2003)=1
Suy ra 200220022002...2002 chia hết cho 2003
| m - n cụm 2002 |
Số này kết thúc là ...2002
1993 không thể là tổng của 3 số tự nhiên liên tiếp vì 1993 không chia hết cho 3
Tận cùng là số 0
Sử dụng đồng dư:
Trước hết ta thấy dó n5 và n có chung chữ số tận cùng nên \(n^5\equiv n\left(mod10\right)\forall n.\)
Gọi x là số cần tìm, a là số tự nhiên thỏa mãn: \(x=a^5.\) Theo lập luận bên trên, do x có tận cùng là 4 nên a cũng có tận cùng là 4.
Vậy thì \(1000000004\le a^5\le9999999994\Rightarrow63< a< 100\)
Do a có tận cùng là 4 nên a = 64, 74 , 84, 94. Vậy x = 1073741824; 2219006624; 4182119424; 7339040224.
cô làm gần giống em