Cho 2 đường thẳng xy và x'y' cắt nhau ở M và góc xMy' = 50 độ. Số đo của góc x'My là bao nhiêu ?
A.40 độ B. 50 độ C.80 độ D.130 dộ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) \(\widehat{A_3}=\widehat{B_3}=130^o\) ( đồng vị; a//b)
c) \(\widehat{A_3}=\widehat{B_1}=130^o\) ( so le trong; a//b)
d)Cặp góc trong cùng phía là: \(\widehat{A_3}\) và \(\widehat{B_2}\)
Vì \(\widehat{A_3}\) và \(\widehat{B_2}\) là hai góc trong cùng phía:
nên: \(\widehat{A_3}+\widehat{B_2}=130^o+50^o=180^o\)
Vậy \(\widehat{A_3}+\widehat{B_3}=180^o\)
^...^ ^_^ ( Bài mk làm có gì ko hiểu bạn cứ hỏi mk nhé)
Trên AB lấy điểm H sao cho ^ACH=600. Gọi CH giao AD tại điểm K. Nối K với E.
Xét \(\Delta\)ACD và \(\Delta\)CAH có:
^ACD=^CAH=800
Cạnh AC chung => \(\Delta\)ACD=\(\Delta\)CAH (g.c.g)
^CAD=^ACH=600
=> AD=CH (2 cạnh tương ứng). Mà \(\Delta\)AKC đều theo cách vẽ => AC=CK=AK và ^ACK=^CAK=^AKC=600
Ta có: ^AKC=^HKD => ^HKD=600 (1)
AD=CH => AK+KD=CK+KH (2). Thay AK=CK vào (2) => KD=KH (3)
Từ (1) và (3) => \(\Delta\)HKD đều => KD=HD=KH và ^HKD=^KHD=^KDH=600
Xét \(\Delta\)CAE: ^AEC=1800 - (^CAE+^ACE) = 1800-(800+500)=1800-1300=500
=> ^AEC=^ACE=500 => \(\Delta\)CAE cân tại A => AC=AE. Mà AC=AK (cmt)
=> AE=AK => \(\Delta\)EAK cân tại A.
Ta có: ^EAK=^BAC-^CAK=800-600=200 => ^AKE=^AEK=(1800-200)/2 = 1600/2=800
Lại có: ^EKH=180-(^AKE+^HKD)=1800-(800+600)=1800-1400=400 => ^EKH=400 (4)
Xét \(\Delta\)CAH: ^AHC=1800-(^ACH+^CAH)=1800-(600+800)=1800-1400=400 => ^AHC=400 hay ^EHK=400 (5)
Từ (4) và (5) => \(\Delta\)KEH cân tại E => EK=EH.
Xét \(\Delta\)EKD và \(\Delta\)EHD có:
KD=HD (cmt)
Cạnh ED chung => \(\Delta\)EKD=\(\Delta\)EHD (c.c.c) => ^KDE=^HDE (2 góc tương ứng)
EK=EH (cmt)
=> ^KDE=^HDE=^KDH/2. Mà ^KDH=600 (cmt) => ^KDE=^HDE=600/2=300
=> ^KDE=300 hay ^ADE=300.
Vậy góc ADE=300.
Cách làm:
B1: NHÌN KĨ VÀO SGK MỤC TỪ VUÔNG GÓC ĐẾN SONG SONG LÀ LÀM ĐƯỢC BÀI A
B2: LẬT LẠI MỤC TÍNH CHẤT HAI ĐƯƠNG THẲNG SONG SONG ĐỂ GIẢI BÀI B
ĐÃ XONG! THANKS
a) Ta có: \(xy\perp mn\) và \(x'y'\perp mn\)
\(\implies xy//x'y'\)
Vậy xy//x'y'(đpcm)
b) Ta có: \(xy//x'y'\) (câu a)
\(\implies \widehat{MCD}+\widehat{NDC}=180^0\) ( 2 góc trong cùng phía)
\(\implies 60^0+\widehat{NDC}=180^0\)
\(\implies \widehat{NDC}=180^0-60^0=120^0\)
Vậy góc NDC=120 độ.
_Học tốt_
Bài 1:
Tam giác MNP có: \(\widehat{M}=40^o;\widehat{N}=100^o\)
Tổng số đo 3 góc của 1 tam giác là 180o, ta được:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow40^o+100^o+\widehat{P}=180^o\\ \Leftrightarrow140^o+\widehat{P}=180^o\\ \Leftrightarrow\widehat{P}=180^o-140^o=40^o\)
Vì: \(\widehat{M}=\widehat{P}=40^o\) => Tam giác MNP là tam giác cân tại N (ĐPCM)
câu d mik từng giải 1 lần nhưng ko biết đúng/ sai, ai biết thì giả thử xem
bài này chắc sẽ có nhiều cách mk xin trình bày cách của mk.(mk xin trình bày ngắn gọn) Từ D kẻ đt song song vs BC cắt AB ở H. Gọi K là giao điểm của BD và HC. Dễ dàng cm đc tam giác HDK và tam giác BKC đều suy ra KB bằng BC. Ta lại cm đc tam giác BEC cân ở B (vì góc BEC =góc BCE=50) => BE=BK => tam giác BEK cân ở K. Từ đây dễ dàng suy ra đc góc HKE =40. Ta cx lại có góc EHK =40=> EH=EK=> tam giác DHE bằng tam giác DKE. Từ đó tính đc góc EDK =30 hay góc EDB=30
C.50 do vi doi dinh
B. 50 độ mới đúng. Bạn sai rồi