K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

  1, 4, 7, 10, 13, 16, 19, 22, 25
Dãy số cách đều nhau 3 đơn vị, có 9 số hạng, số hạng đầu là 1, số hạng cuối là 25.
TỔNG               =     (1 + 25) x 9 : 2 = 117
SỐ CUỐI          =    1 + 3 x (9 - 1)    =   25
SỐ ĐẦU            =   25 - 3 x (9 - 1)   =    1
SỐ SỐ HẠNG =    (25 - 1) : 3 + 1   =   9
TB CỘNG =  (1+4+7+10+13+16+19+22+25) : 9  = (1 + 25) : 2 =13   hay bằng số ở giữa  13

Bạn lm tương tự đi chỉ thay số thui mk vd gắn cho nó đỡ tính lâu nha bạn

22 tháng 10 2016

số số hạng dãy trên là :

( 100 - 4 ) : 3 + 1 = 33 ( số )

tổng dãy trên là :

( 100 + 4 ) x 33 : 2 = 1716

trung bình cộng của tất cả các số lẻ trong dãy số trên là :

1716 : 33 = 52

Đáp số : 52

30 tháng 10 2015

\(\frac{25}{31}\)

3 tháng 3 2016

kết quả là 301

7 tháng 1 2016

1007

áp dụng công thức mà tính bạn ạ

7 tháng 1 2016

= 1007

tick nha !

27 tháng 7 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

27 tháng 7 2019

Trả lời

a)10 số hạng đầu tiên gồm:

1/2;1/6;1/12;1/20;1/30;1/42;1/56;1/74;1/94;1/116

Tổng của 10 số hạng đầu tiên mk ko biết rồi !

b)Có !

25 tháng 11 2023

1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)

\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

23 tháng 4 2023

x+2-7 =3-5