K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

m = 1

Thay x=-1 vào (P), ta được:

y=-2*(-1)^2=-2

Thay x=-1và y=-2 vào (d), ta được:

-(m+1)-m-3=-2

=>-m-1-m-3=-2

=>-2m-4=-2

=>2m+4=2

=>m=-1

PTHĐGĐ là;

x^2-3x-m^2+1=0

Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0

=>Phương trình luôn có hai nghiệm phân biệt

TH1: x1>0; x2>0

=>x1+2x2=3

mà x1+x2=3

nên x1=1; x2=1

x1*x2=-m^2+1

=>-m^2+1=1

=>m=0

TH2: x1<0; x2>0

=>-x1+2x2=3 và x1+x2=3

=>x1=1; x2=2

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2-1=0(loại)

TH2: x1>0; x2<0

=>x1-2x2=0 va x1+x2=3

=>x1=2 và x2=1

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2=1(loại)

TH3: x1<0; x2<0

=>-x1-2x2=3 và x1+x2=3

=>x1=9 và x2=-6

x1*x2=-m^2+1

=>-m^2+1=-54

=>-m^2=-55

=>\(m=\pm\sqrt{55}\)

1 tháng 5 2023

|x1|+2 |x2| = 3 : .

làm sao chứng minh đc  
NV
23 tháng 4 2021

Phương trình hoành độ giao điểm d và (P):

\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)

27 tháng 4 2021

A ơi, chỗ \(m< -\dfrac{1}{8}\) ý, dấu > mới đúng chứ a!?

8 tháng 3 2022

ai rảnh giúp nó đi⚡

3 tháng 6 2017
  1. xét phương trình hoành độ giao điểm :  \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên  phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
  2. Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)

nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)

  • \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
  • \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
28 tháng 2 2019

2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )

a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?

b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.

Tìm m sao cho: OH2 + OK2 = 6     mọi người hướng dẫ mk ý b vs

NV
21 tháng 4 2021

Phương trình hoành độ giao điểm:

\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)

\(\Rightarrow m=1\) (thỏa mãn)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (P) với (d):

\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)

\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)

\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)

\(=4m^2+8m+4-4m^2-12\)

\(=8m-8\)

(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.

\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)

\(\Leftrightarrow m< 1\)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (p) và (d) là

\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)

\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)

\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)

\(=m^2+2m+1-m^2-3=2m-2\)

(p) và (d) không có điểm chung <=> \(\Delta< 0\)

<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)

Vậy với \(m< 1\)thì (p) và (d) không có điểm chung

13 tháng 6 2018

a, Bảng giá trị

x

-2

-1

0

1

2

y = –x2

-4

-1

0

-1

-4

Đồ thị:

b) Xét phương trình hoành độ giao điểm của (d) và (P): –x2 = 4x – m x2 + 4x – m = 0 (1)

(d) và (P) có đúng 1 điểm chung phương trình (1) có nghiệm kép ∆’ = 22 – (–m) = 0

ó 4 + m = 0 m = –4

Vậy m = –4

 

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10