Chứng minh rằng : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$2015=5.13.31$2015=5.13.31
Ta có: $1.2.....1007=1.2...5....13.....31...1007\text{ chia hết cho }5.13.31=2015$1.2.....1007=1.2...5....13.....31...1007 chia hết cho 5.13.31=2015
$1008.1009.....2004=1008....\left(1010\right)....\left(1014\right)...\left(1023\right)....2004$1008.1009.....2004=1008....(1010)....(1014)...(1023)....2004
$=1008....\left(5.202\right)....\left(13.78\right)....\left(31.33\right)...2004\text{ chia hết cho }5.13.33=2015$=1008....(5.202)....(13.78)....(31.33)...2004 chia hết cho 5.13.33=2015
Do đó tổng 2 số trên chia hết cho 2015.
2.
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2013.2014}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2013}+\frac{1}{2014}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2013}+\frac{1}{2014}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\)
Lại có B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+...+\frac{1}{2014.1008}\)
=> 3022B = \(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+\frac{3022}{1010.2012}+...+\frac{3022}{2014.1008}\)
\(=\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+\frac{1}{1010}+\frac{1}{2012}+...+\frac{1}{2014}+\frac{1}{1008}\)
\(=2.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=> \(B=\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)
=> \(\frac{A}{B}=1511\)
=> A/B là 1 số nguyên (đpcm)
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{2005}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}+\frac{1}{2006}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
= \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}+\frac{1}{2006}\)\(-\frac{1}{1}-\frac{1}{2}-...-\frac{1}{1003}\)
= \(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2005}+\frac{1}{2006}\)
(=) B - A = \(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}+\frac{1}{2016}\)- \(\frac{1}{1004}-\frac{1}{1005}-...-\frac{1}{2005}-\frac{1}{2006}\)
= \(\frac{1}{2007}+\frac{1}{2008}+...+\frac{1}{2016}-\) \(\frac{1}{1004}-\frac{1}{1005}-\frac{1}{1006}-\frac{1}{1007}\)