Chứng minh rằng
a) (n+1).(n+2) chia hết cho 2 n thuộc N
b) (n+1).(n+2).(n+3) chia hết cho 3 n thuộc N
giải giùm mình nhé mình sẽ tink cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Đặt A=n(n+2)(n+7)
TH1: n=3k => A hiển nhiên chia hết cho 3
TH2: Nếu n=3k+1 => A=(3k+1)(3k+1+2)(3k+1+7)=(3k+1).3(k+1)(3k+8) chia hết cho 3
TH3: Nếu k=3k+2 => A=(3k+2)(3k+2+2)(3k+2+7)=(3k+2)(3k+4).3(k+3) chia hết cho 3
Vậy A chia hết cho 3 với mọi n thuộc Z
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
a) n + 11 chia hết cho n +2
n + 11 chia hết cho n + 2
Ta luôn có n+ 2 chia hết cho n+ 2
=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)
=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)
=> 9 chia hết cho (n+ 2)
=> Ta có bảng sau:
n+ 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | -3 | -5 | -11 | -1 | 1 | 8 |
Vì n thuộc N => n \(\in\) { 1; 8}
b) 2n - 4 chia hết cho n- 1
Ta có: (n -1 ) luôn chia hết cho (n- 1)
=> 2( n-1)\(⋮\) (n-1)
=>(2n- 2) chia hêt cho (n- 1)
=> (2n-4 )- (2n-2) chia hết cho (n-1 )
=> -2 chia hết cho ( n-1)
=> Ta có bảng sau:
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Vì n thuộc N nên n thuộc {0; 2; 3}
a) một số có hai chữ số giống nhau đều chia hết cho 11
a/ (n+1).(n+2)=2n.(1+2)chia hết2
b/ (n+1).(n+2).(n+3)=3n.(1+2+3)chia hết 3