K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)

\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)

Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)

\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)

\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)

Ta có đpcm

24 tháng 2 2022

Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha

Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)

 
24 tháng 2 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)

Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$

30 tháng 1 2016

mình ko biết

23 tháng 6 2018

\(P=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ca+ab+bc\right)}\)

\(=\sqrt{\left(a\left(a+b\right)+c\left(a+b\right)\right)\left(b\left(a+b\right)+c\left(a+b\right)\right)\left(c\left(a+c\right)+b\left(a+c\right)\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

vì a,b,c là sô số hữu tỉ\(\Rightarrow a+b,a+c,b+c\)là số hữu tỉ \(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)\)là số hữu tỉ

\(\Rightarrow P\)là số hữu tỉ   (đpcm)

27 tháng 9 2021

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

5 tháng 7 2023

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)