Chứn minh rằng: 12002 +22002 +32002 +.....+ 20022002 chia hết cho 11.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10^2 + 10^3 + 10^4 = 10^2( 1 + 10 + 10^2) = 10. 10 . 111 = 10 . 1110 = 10. 555. 2 chia hết cho 555 => 10^2 + 10^3 + 10^4 chia hết cho 555
Ta có:
\(10^2+10^3+10^4\) =\(10^2\left(1+10+10^2\right)\)
=\(10^2.111\)=\(5.20.111=555.20\)
chia hết cho 555
Vậy biểu thức trên chia hết cho 555
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
Chưa chắc 2x + 3y đã chia hết cho 11
Ví dụ : x = 1 và y = 2
thì 2x + 3y = 2 + 6 = 8 ko chia hết cho 11
Xem lại đề đi
b) \(69^2-69.5\)
= 69 . 69 -69 . 5
= 69 . (69 - 5)
=69 . 64
Vì 64 \(⋮\)32 nên 69 . 64 hay \(69^2\)- 69.5 \(⋮\)32
Ta có : \(a-11b+3c⋮17\)
\(\Leftrightarrow19.\left(a-11b+3c\right)⋮17\)
\(\Leftrightarrow19a-209b+57c⋮17\)
\(\Leftrightarrow\left(17a-204b+51c\right)+\left(2a-5b+6c\right)⋮17\)
\(\Rightarrow\left(2a-5b+6c\right)⋮17\)(vì 17a - 204b + 51c đã chia hết cho 17 )
\(\RightarrowĐCPM\)
P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002
Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11)
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6}
P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2)
Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p)
=> a^10 ≡ 1 (mod 11)
=> a^2000 ≡ 1 (mod 11)
=> a^2002 ≡ a^2 (mod 11) (*)
Từ (*) => P - Q ≡ 0 (mod 11)
mà Q ≡ 0 (mod 11) theo cm trên
=> P ≡ 0 (mod 11)