a) Tìm n thuộc N để n mũ 10 + 1 chia hết cho 10
b) Tìm n thuộc N để n mũ 2 + n + 2 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ giúp phần a nha
B=1+ 4+42 +....+ 499
4B=4+ 42+43+...+4100
4B-B=4100-1
3B=4100-1
B= 1 + 4+4 MŨ 2+.....+4 MŨ 99
4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100
4B-B=4 MŨ 100- 1
3B=4 mũ 100-1
Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n
Suy ra 4 mũ 100=4 mũ n
suy ran=100
Ta có : n2 + 5 = n(n + 1) - n + 5 = n(n + 1) - (n + 1) + 6 = (n - 1)(n + 1) + 6
Mà n2 + 5 \(⋮\)n + 1
<=> (n - 1)(n + 1) + 6 \(⋮\)n + 1
<=> 6 \(⋮\)n + 1
<=> n + 1 \(\in\)Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Vậy ...
Ta có : \(n^2+5⋮n+1\)
\(\Rightarrow n^2+n+5-n⋮n+1\)
\(\Rightarrow n.\left(n+1\right)+5-n⋮n+1\)
\(\Rightarrow5-n⋮n+1\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow6⋮n+1\)
Ta có bẳng sau
n+1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -7 | -4 | -3 | -2 | 0 | 1 | 2 | 5 |
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
Với \(n\in N|n^2⋮n+2\)
Áp dụng CM \(x+y=x\times y\), thấy ngay tính chất của 2 (:
Vậy \(n=2\)
\(\frac{n^2}{n+2}\in Z\)( n\(\in\)N )
Ta có : \(\frac{n^2}{n+2}=\frac{n^2+2n-2n}{n+2}=\frac{n\left(n+2\right)-2n+4-4}{n+2}\)
\(=n-\frac{2n+4-4}{n+2}=n-2-\frac{4}{n+2}\)
Để \(\frac{n^2}{n+2}\in Z\)thì\(\frac{4}{n+2}\in Z\)
=> n + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> n\(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
Mà n\(\in\)N => n\(\in\){ 0 ; 2 }
Vậy n\(\in\){ 0 ; 2 }
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Gọi f( x ) = n2 + 8
g( x ) = n + 1
Cho g( x ) = 0
\(\Leftrightarrow\)n + 1 = 0
\(\Rightarrow\)n = - 1
\(\Leftrightarrow\)f( - 1 ) = ( - 1 )2 + 8 = 9
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n + 1 \(\in\)Ư( 9 ) = { 1 ; 3 ; 9 }
Ta lập bảng :
n + 1 | 1 | 3 | 9 |
n | 0 | 2 | 8 |
Vậy : n\(\in\){ 0 ; 2 ; 8 }
a) Ta có:
\(n^2+3n+2\)
\(=n^2+n+2n+2\)
\(=n\left(n+1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n+2\right)\)
Vì \(n+1⋮n+1\)
\(\Rightarrow n+2⋮n+1\)
Ta có:
\(n+2=n+1+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)
\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)
Vậy \(n=0\)