cho S=1/5+2/52+...+2013/52013
hãy so sánh với 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)
\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)
\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=4026\cdot\dfrac{5}{6}=3355\)
Ta có:
\(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+..+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...\frac{1}{100}\)(50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}\times50\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Ai k mình mình k lại.
mk cx k chắc lắm nha
Ta có1/51<1/50 , 1/52<1/50......1/60<1/50
=>1/51+1/51+...+1/60< 1/50.10
=>1/51+1/51+...+1/60<1/5 ,1/5<1/2
=> 1/51+1/51+...+1/60<1/2
=>S<1/2
dãy trên có tất cả :(100-51):1+1=50 phân số
Ta có : 1/2:50=1/100
=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)
Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối
=>dãy S >1/2
cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2
A=\(\frac{1}{51}\)+\(\frac{1}{52}\)+......+\(\frac{1}{100}\)
Ta có:\(\frac{1}{51}\)<\(\frac{1}{100}\)
\(\frac{1}{52}\)<\(\frac{1}{100}\)
...................
\(\frac{1}{100}\)=\(\frac{1}{100}\)
\(\Rightarrow\)A=\(\frac{1}{51}+\frac{1}{52}+\).......\(+\frac{1}{100}\)<\(\frac{1}{100}\times50=\frac{1}{2}\)
Vậy A<\(\frac{1}{2}\)