K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)

\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)

\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)

\(=4026\cdot\dfrac{5}{6}=3355\)

3 tháng 4 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+..+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...\frac{1}{100}\)(50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}\times50\)

\(\Rightarrow S>\frac{1}{2}\)

                                          Vậy \(S>\frac{1}{2}\)

Ai k mình mình k lại.

26 tháng 8 2018

mk cx k chắc lắm nha

Ta có1/51<1/50  ,  1/52<1/50......1/60<1/50

=>1/51+1/51+...+1/60< 1/50.10

=>1/51+1/51+...+1/60<1/5   ,1/5<1/2

=> 1/51+1/51+...+1/60<1/2

=>S<1/2

15 tháng 3 2023

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2

23 tháng 4 2015

Bạn ghi ra hết luôn được không???

 

15 tháng 3 2015

cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2

13 tháng 5 2016
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng) Nên: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
20 tháng 3 2017

A=\(\frac{1}{51}\)+\(\frac{1}{52}\)+......+\(\frac{1}{100}\)

Ta có:\(\frac{1}{51}\)<\(\frac{1}{100}\)

          \(\frac{1}{52}\)<\(\frac{1}{100}\)

          ...................

          \(\frac{1}{100}\)=\(\frac{1}{100}\)

      \(\Rightarrow\)A=\(\frac{1}{51}+\frac{1}{52}+\).......\(+\frac{1}{100}\)<\(\frac{1}{100}\times50=\frac{1}{2}\)

      Vậy A<\(\frac{1}{2}\)