Bài 8. Cho tam giác ABC cân tại A. Kẻ BM vuông góc với AC tại M, kẻ CN vuông góc với AB tại N. Gọi H là giao điểm của BM và CN.
a. Chứng minh:
b. Cho AC = 10 cm, NC = 8cm. Tính AM.
c. Chứng minh: H nằm trên tia phân giác của góc BAC.
( Vẽ hình và ghi giả thiết – kết luận của bài toán)
Gợi ý đáp án:
(HS tự ghi giả thiết – kết luận của bài toán)
a. ( cạnh huyền – góc nhọn)
b. AM = 6cm.
c. (g.c.g) (c.c.c)
( hai góc tương ứng) H nằm trên tia phân giác của góc BAC.
Giải giùm mình với các bạn ơiiiii
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc A chung
=>ΔAMB=ΔANC
b: AN=căn 10^2-8^2=6cm=AM
c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có
AH chung
AN=AM
=>ΔNAH=ΔMAH
=>góc NAH=góc MAH
=>H nằm trên tia phân giác của góc BAC