K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc A chung

=>ΔAMB=ΔANC

b: AN=căn 10^2-8^2=6cm=AM

c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có

AH chung

AN=AM

=>ΔNAH=ΔMAH

=>góc NAH=góc MAH

=>H nằm trên tia phân giác của góc BAC

16 tháng 1 2016

cậu giỏi toán hình nhất lớp đúng ko

16 tháng 1 2016

trái lại là cực kì tệ...

 

Xét ΔICB có IB=IC

nên ΔIBC cân tại I

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)

Xét ΔNCB vuông tại N và ΔMBC vuông tại M có 

BC chung

\(\widehat{NCB}=\widehat{MBC}\)

Do đó: ΔNCB=ΔMBC

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)

hay ΔABC cân tại A

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

a: Xét ΔBAC có BM là phân giác

nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)

=>\(\dfrac{AM}{5}=\dfrac{CM}{2}\)

mà AM+CM=AC=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{5}=\dfrac{CM}{2}=\dfrac{AM+CM}{5+2}=\dfrac{5}{7}\)

=>\(AM=5\cdot\dfrac{5}{7}=\dfrac{25}{7}\left(cm\right);CM=2\cdot\dfrac{5}{7}=\dfrac{10}{7}\left(cm\right)\)

b: Ta có: \(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{ACN}=\widehat{NCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABM}=\widehat{MBC}=\widehat{ACN}=\widehat{NCB}\)

Xét ΔABM và ΔACN có

\(\widehat{ABM}=\widehat{ACN}\)

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

=>AM=AN

Xét ΔABC có \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

nên MN//BC