tìm x,y,z :
\(\frac{2x}{3}\)= \(\frac{3y}{5}\)= \(\frac{5z}{6}\) và 3x - 4y + 3z = -59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
<img class="irc_mi iAxkr7uWhlxs-pQOPx8XEepE" alt="Kết quả hình ảnh cho tỉ lệ thức" style="margin-top: 64px;" src="http://sgk.vnedu.vn/dataimages/201506/original/images1129577_1_7_baitaptoanlop7tap1_chuong1_bai7_tilethuc_1.jpg" onload="google.aft&&google.aft(this)" width="304" height="265">
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)
\(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)
TỪ ĐÓ SUY RA Y=9;Z=15
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) hay \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\) => \(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}=\frac{3x-4y+5z}{54-64+75}=\frac{65}{65}=1\)
suy ra: \(\frac{3x}{54}=1\) => \(x=18\)
\(\frac{4y}{64}=1\) => \(y=16\)
\(\frac{5z}{75}=1\) => \(z=15\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\Rightarrow\frac{3x}{\frac{2}{3}.3}=\frac{4y}{\frac{3}{4}.4}=\frac{5z}{\frac{4}{5}.5}\)
\(\Leftrightarrow\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{4}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU:
\(\Leftrightarrow\frac{3x}{2}-\frac{4y}{3}+\frac{5z}{5}\Rightarrow\frac{3x-4y+5z}{2-3+5}=\frac{65}{4}\)
\(\Rightarrow\frac{3x}{2}=\frac{65}{4}\Rightarrow3x=\frac{65}{4}.2\Rightarrow3x=\frac{65}{2}\Rightarrow x=\frac{65}{6}\)
\(\Rightarrow\frac{4y}{3}=\frac{65}{4}\Rightarrow4y=\frac{65}{4}.3\Rightarrow4y=\frac{195}{4}\Rightarrow y=\frac{195}{16}\)
\(\Rightarrow\frac{5z}{5}=\frac{65}{4}\Rightarrow5z=\frac{65}{4}.5\Rightarrow5z=\frac{325}{4}\Rightarrow z=\frac{65}{4}\)
# chúc bạn học tốt #
Đặt \(\frac{2x}{3}=\frac{3y}{5}=\frac{5z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3k}{2}\\y=\frac{5k}{3}\\z=\frac{6k}{5}\end{cases}}\)
\(\Rightarrow3x-4y+3z=\frac{3.3k}{2}-\frac{4.5k}{3}+\frac{3.6k}{5}=-59\)
\(\Rightarrow\frac{9k}{2}-\frac{20k}{3}+\frac{18k}{5}=-59\)
\(\Rightarrow k.\left(\frac{9}{2}-\frac{20}{3}+\frac{18}{5}\right)=-59\)
\(\Rightarrow k.\frac{43}{30}=-59\)
=> k = -1770/43
Số lớn khiếp , còn lại tự nhân lên rồi tìm x,y,z nha