K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}

““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}

18 tháng 1 2018

cho abc tia phan giac cua goc b cat ac o d tren tia doi cua tia ba lay e sao cho be = bc chung minh bd song song ec cai nay lam sao

16 tháng 2 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Các tam giác cân ABC và ADC có chung góc ở đỉnh ∠A nên ∠B1 = ∠ADE. Mà hai góc này ở vị trí đồng vị nên suy ra BC // DE.

4 tháng 12 2016

Chứng minh :
Vẽ hình bình hành ABMC ta có AB = CM . 
Để chứng minh AB = KC ta cần chứng minh KC = CM. 
Thật vậy xét tam giác BCE có BC = CE (gt) => tam giác CBE cân tại C =>  vì góc C1 là góc ngoài của tam giác BCE =>  mà AC // BM (ta vẽ) =>  nên BO là tia phân giác của . Hoàn toàn tương tự ta có CD là tia phân giác của góc BCM . Trong tam giác BCM, OB, CO, MO đồng quy tại O => MO là phân tia phân giác của góc CMB
Mà :  là hai góc đối của hình bình hành BMCA => MO // với tia phân giác của góc A theo gt tia phân giác của góc A còn song song với OK => K,O,M thẳng hàng.
Ta lại có :   mà  (hai góc đồng vị) => cân tại C => CK = CM. Kết hợp AB = CM => AB = CK (đpcm)

tk nha bạn

thank you bạn

20 tháng 9 2017

Bạn tự vẽ hình nha, vẽ hình rồi post lên lâu quá :D

Vẽ hình bình hành ABMCABMC ta có AB=CMAB=CM

Cần chứng minh KC=CMKC=CM

Xét tam giác BCEBCE có BC=CEBC=CE⇒ΔCBE⇒ΔCBE cân tại CC

⇒ˆCBE=ˆE⇒CBE^=E^

Lại có ˆACB=ˆCBE+ˆE⇒ˆCBE=12ˆACBACB^=CBE^+E^⇒CBE^=12ACB^

Mà AC//BM⇒ˆACB=ˆCBM⇒ˆCBE=12ˆCBMAC//BM⇒ACB^=CBM^⇒CBE^=12CBM^

Nên BOBO là phân giác của ˆCBMCBM^

TƯơng tự ta có CDCD là phân giác của ˆBCMBCM^

Trong ΔBCMΔBCM có OB,CO,MOOB,CO,MO đồng quy tại OO

⇒MO⇒MO là tia phân giác của ˆCMBCMB^

Mà ˆBAC,ˆBMCBAC^,BMC^ là hai góc đối của hình bình hành BMCABMCA

⇒MO⇒MO song song với tia phân giác của góc ˆAA^

Mà tia phân giác góc ˆAA^ song song với OKOK 

Nên O,M,KO,M,K thẳng hàng 

Ta lại có ˆCMK=12ˆBMC;ˆA=ˆMCMK^=12BMC^;A^=M^

⇒ˆCMK=ˆA2⇒CMK^=A2^ màˆA2=ˆCKMA2^=CKM^

⇒ˆCKM=ˆCMK⇒ΔCKM⇒CKM^=CMK^⇒ΔCKM cân tại CC

⇒CK=CM⇒CK=CM , suy ra ĐPCM

10 tháng 8 2019

A B C D E O K x L

Gọi Ax là phân giác của ^BAC. Dựng hình bình hành ABLC.

Trước hết ta có \(\Delta\)DBC cân tại B => ^BCD = ^BDC = ^LCD (Vì AB // CL)

Tương tự ^CBE = ^LBE. Do đó BE,CD là hai đường phân giác trong \(\Delta\)BLC

Vì BE giao CD tại O nên LO là phân giác của ^BLC

Chú ý rằng Ax là phân giác của ^BAC, suy ra Ax // LO

Mà OK // Ax nên K,O,L thẳng hàng (Tiên đề Euclid)

Do vậy ^CKL = ^BLK = ^CLK => \(\Delta\)KCL cân tại C => CK = CL = AB (đpcm).

18 tháng 1 2018

)BD=CE mà AB=AC -> EA=DA
a) xét tam giác EAB và tam giác DAC có :
AB=AC ( tam giác ABC cân tại A )
góc EAB = góc DAC (đối đỉnh )
EA=AD (cmt)
-> tam giác EAB=tam giác DAC ( c.g.c)
-> góc EBA = góc DCA ( cặp góc tương ứng )
-> ED=DC ( cặp cạnh tương ứng )
*) tam giác ABC cân tại A -> góc B = góc C
mà góc EBA=góc DCA -> góc EBC= góc DCB
-> tan giác IBC cân tại I -> IB=IC
**) IB=IC ( cmt )
mà EB=DC
-> ID=IE

b) tam giác AED có AE=AD
-> tam giác AED cân tại A -> góc AED = góc EDA (1)
góc B = góc C (cmt) (2)
góc EAD = góc BAC ( đối đỉnh ) (3)
từ (1), (2), (3) -> góc AED = góc ACB
mà 2 góc ở vị trí so le trong -> ED//BC
c) ED cắt IA tại H
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh

-> I,H,A thẳng hàng (4)
vì ED//BC .
M là trung điểm của BC -> M cũng là trung điểm của ED
-> H , A , M thằng hàng (5)
từ (4) và (5) -> I ,A,M thẳng hàng

30 tháng 12 2018

)BD=CE mà AB=AC -> EA=DA
a) xét tam giác EAB và tam giác DAC có :
AB=AC ( tam giác ABC cân tại A )
góc EAB = góc DAC (đối đỉnh )
EA=AD (cmt)
-> tam giác EAB=tam giác DAC ( c.g.c)
-> góc EBA = góc DCA ( cặp góc tương ứng )
-> ED=DC ( cặp cạnh tương ứng )
*) tam giác ABC cân tại A -> góc B = góc C
mà góc EBA=góc DCA -> góc EBC= góc DCB
-> tan giác IBC cân tại I -> IB=IC
**) IB=IC ( cmt )
mà EB=DC
-> ID=IE
b) tam giác AED có AE=AD
-> tam giác AED cân tại A -> góc AED = góc EDA (1)
góc B = góc C (cmt) (2)
góc EAD = góc BAC ( đối đỉnh ) (3)
từ (1), (2), (3) -> góc AED = góc ACB
mà 2 góc ở vị trí so le trong -> ED//BC
c) ED cắt IA tại H
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh

-> I,H,A thẳng hàng (4)
vì ED//BC .
M là trung điểm của BC -> M cũng là trung điểm của ED
-> H , A , M thằng hàng (5)
từ (4) và (5) -> I ,A,M thẳng hàng

25 tháng 2 2018

a, đơn giản ta CM được hai tam giác DCB và EBC bằng nhau => góc EBC = góc DCB => tam giác BIC cân tại I => IB = IC (đpcm)

tương tự chứng minh được hai tam giác DIB và EIC bằng nhau => ID = IE (đpcm)

b, ta có tam giác DAE cân tại A => 2góc D = 180-góc A

             tam giác BAC cân tại A => 2 góc B = 180o - góc A

=> góc D = góc B  => BC// DE (đpcm)

c, Nối AM => AM vừa là trung tuyến vừa là đường trung trựctại M của BC

    Nối IM => IM vừ là trung tuyến vừa là đường trung trực tại M của BC

=> AM và IM cùng nằm trên đường trung trực của BC tại M hay 3 điểm A,M,I thẳng hàng

25 tháng 2 2018

a) Tam giác ABC cân tại A suy ra \(\widehat{B_1}=\widehat{C_1}\)

Xét tam giác ABM và tam giác ACM có :

AB = AC ( tam giác ABC cân tại A )

\(\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)

BM = CM ( gt )

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ABI và tam giác ACI có :

AI chung

AB = AC ( tam giác ABC cân tại A )

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow IB=IC\)

Vì AD = AB + BD

AE = AC + BC 

Mà AB = AC ( tam giác ABC cân tại A )

DB = EC ( gt )

\(\Rightarrow AD=AE\)

Xét tam giác ADI và tam giác AEI có :

AI chung

AD = AE ( cmt )

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(\Rightarrow\Delta ADI=\Delta AEI\left(c-g-c\right)\)

\(\Rightarrow DI=EI\)hay ID = IE 

b) Vì tam giác ABC cân tại A ( gt )

\(\Rightarrow\)\(\widehat{B_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Vì tam giác ADE có AD = AE ( cmt )

Suy ra tam giác ADE cân 

\(\Rightarrow\widehat{D}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{B_1}=\widehat{D}\)mà hai góc này ở vị trí đồng vị

Suy ra BC // DE 

c) Ta có : \(\widehat{M_2}=\widehat{M_1}\left(\Delta ABM=\Delta ACM\right)\left(cmt\right)\)

Mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( 2 góc này ở vị trí kề bù )

\(\widehat{M_2}=\widehat{M_3}\)( đối đỉnh )

\(\Rightarrow\widehat{M_1}+\widehat{M_3}=180^o\)

\(\Rightarrow\)A ; M ; I thẳng hàng 

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2