cho phương trình ẩn x: x^2 -2x -m+2=0(m là tham số)
a Tìm m để phương trình đã cho có 2 nghiệm phân biệt.
b.Tìm m để 2 nghiệm x1, x2 thoả mãn : x1^2 -x2^2= 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để phương trình có hai nghiệm trái dấu thì m+2<0
hay m<-2
a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:
\(3^2-m.3+2m-4=0\)
\(\Leftrightarrow9-3m+2m-4=0\)
\(\Leftrightarrow m-5=0\)
\(\Leftrightarrow m=5\)
Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:
\(\Delta=\left(-5\right)^2-4.1.6=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x=2\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)
Khi đó:
$2x_1^3+(m+2)x_2^2=5$
$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$
$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$
\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)
\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)
\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)
Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.
\(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+6m+9-4m-8=m^2+2m+1=\left(m+1\right)^2\)
Để pt có 2 nghiệm pb khi \(m+1\ne0\Leftrightarrow m\ne-1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+3\left(1\right)\\x_1x_2=m+2\left(2\right)\end{matrix}\right.\)Lại có \(x_1-x_2=-1\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1-x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=m+2\\x_2=m+3-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+2}{2}\\x_2=\dfrac{2m+6-m-2}{2}=\dfrac{m+4}{2}\end{matrix}\right.\)
Thay vào (2) ta được
\(\dfrac{\left(m+2\right)\left(m+4\right)}{4}=m+2\Leftrightarrow\left(m+2\right)\left(m+4\right)-4\left(m+2\right)=0\)
\(\Leftrightarrow\left(m+2\right)m=0\Leftrightarrow m=0\left(tm\right);m=-2\left(ktm\right)\)
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
a: Thay m=-3 vào (1), ta được:
\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
hay x∈{3;-1}
1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)
=1+4m-4
=4m-3
Để phương trình có nghiệm kép thì 4m-3=0
hay m=3/4
Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)
hay x=1/2
2: Để phương trình có hai nghiệm thì 4m-3>=0
hay m>=3/4
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m+1\)
=>1-m=-12
hay m=13
a) xét delta phẩy ta có:
1 + m - 2 = m -1 để phương trình có 2 nghiệm phân biệt thì delta phẩy >0
=> m-1>0 => m > 1
b) theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=2-m\end{matrix}\right.\)
theo bài ra ta có: x12 - x22 = 8
<=> (x1-x2).(x1+x2)= 8
<=> 2(x1-x2) = 8 <=> x1-x2 = 4
<=> (x1-x2)2 = 16 <=> x12 + x22 - 2x1x2 = 16
<=> (x1+x2)2 - 4x1x2 = 16 <=> 4 - 4.(2m - 1 ) = 16
<=> 4 - 8m + 4 = 16 <=> 8m = -8
=> m = -1
vậy m = -1 thỏa mãn x12 - x22 = 8
bài này m = -1 loại nha do không thỏa điều kiện
=> không có m thỏa mãn.
( sorry tui làm ẩu quá nên quên cái điều kiện m > 1 )