K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2022

B A O K E F N G

a> Ta có NB và NA là hai tiếp tuyến của đường tròn tâm O 

=> NBO = NAO = 90 độ => tứ giác NBOC nội tiếp < tổng hai góc đối = 180 độ >

b> Xét đường tròn tâm O có:

NBE=1/2sđ cung BE < góc tạo bởi tt và dc >  và NFB = 1/sđ BE < góc nt > 

=> NBE = NFB 

Xét tam giác NBE và tam giác NFB có:

NBE = NFB cmt 

FBN chung

=> tam giác NBE đồng dạng với tam giác NFB < g-g>

=> NB/NF = NE / NB => NB bình = NE.NF 

Vì NA và NB là 2 tt cắt nhau tại A => NA = NB => NB bình = NA bình = AE.AF 

c> Vì k là trung điểm của EF => OK vuông góc với EF => OKN = 90 độ 

sơ đồ tư duy

CM: N,B,K,O,A cùng thuộc 1 đường tròn 

Xét các tứ giác => góc BKN =  góc BAN và góc AKN= góc ABN  / Mà ABN = BAN < NA=NB tt>

-=> BKN = AKN 

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

29 tháng 5 2017

a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.

b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà 

  • \(\widebat{OA}\)=\(\widebat{OB}\)\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=R​bình.​
  • c)

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: ONMP nội tiếp

=>góc NMO=góc NPO

c: Xét ΔMNA và ΔMBN có

góc MNA=góc MBN

góc NMA chung

=>ΔMNA đồng dạng với ΔMBN

=>MN/MB=MA/MN

=>MN^2=MB*MA

a: góc MNO+góc MPO=90+90=180 độ

=>MNOP nội tiếp

b: MNOP nội tiếp

=>góc NMO=góc NPO

1: góc OAS+góc OBS=90+90=180 độ

=>OASB nội tiép

2: Xét ΔSAC và ΔSDA có

góc SAC=góc SDA

góc ASC chung

=>ΔSAC đồng dạng với ΔSDA

=>SA/SD=SC/SA

=>SA^2=SD*SC=SA*SB

3: Xét (O) có

SA,SB là tiêp tuyến

=>SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS vuông góc AB tại I

=>SI*SO=SA^2=SC*SD

=>SI/SD=SC/SO

=>ΔSIC đồng dạng với ΔSDO