K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

a. Gọi giao điểm của AK và BN là Q

Ta có: 

ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘

Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘

ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)

⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^

Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)

⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘

⇒ˆAQM=90∘⇒AQM^=90∘

Hay AK vuông góc với BN.

b. Theo câu a: AK vuông góc với BN tại Q

Mà BQ là phân giác của góc ˆIBKIBK^ 

Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B

Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.

Chứng minh tương tự: Q là trung điểm của MN

Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK

Vậy MINK là hình thoi.

18 tháng 7 2016

xét tam giác  abe va acf

co ;goc f=goc e =90

goc a chung 

 2 tam giuac dong dang 

 

29 tháng 4 2019

A B C D H E F

a) Xét ΔABE và ΔACE có:

\(\widehat{AEB}=\widehat{AFC}\) \(=90^0\)

\(\widehat{CAB}:chung\)

=> ΔABE∼ΔACE (g.g)

b) Xét ΔFHB và ΔEHC có:

\(\widehat{HFB}=\widehat{HEC}\) \(=90^0\)

\(\widehat{FHB}=\widehat{EHC}\) (2 góc đối đỉnh)

=> ΔFHB∼ΔEHC (g.g)

=> \(\frac{HF}{HE}=\frac{HB}{HC}\Leftrightarrow HF.HC=HB.HE\) (đpcm)

c) Theo câu a) ta có: ΔABE∼ΔACF

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét ΔBAC và ΔEAF có:

\(\widehat{BAC}:chung\)

\(\frac{AB}{AC}=\frac{AE}{AF}\) (cmtrn)

=> ΔBAC∼ΔEAF (c.g.c)

=> \(\widehat{AEF}=\widehat{ABC}\) (2 góc tương ứng)

29 tháng 4 2016
T.giac vuong Abe ~ t.giac vuông afc ( a chung) b/ t.giac vuông hfb ~ t.giac vuông hec ( h1= h2 do đối đỉnh) => he.hb=hc.hf C/ afe ~ abc => AF/AE=AC/AB ( 1) A CHUNG => T.GIAC afe ~ t.giac acb => góc aef = góc abc D/ t.giac bec ~ adc ( tự cm) => AC/BC=DC/EC AC/BC = DC/EC ,góc C CHUNG => t giac CED ~ t.giac CBA mà t.giac cba ~ vs t giac FEA => t.giac FEA ~ VS T.giac CED => góc aef = ced mà aef + feb = 90* Ced + deb =90* Nên goc feb = góc deb => BE LÀ p.g góc DEF :)) lm biếng viết hoa pn thông cảm đọc nha
15 tháng 4 2017

Nguyễn Trọng Phúc cho mình hỏi tại sao AC/BC = DC/EC?

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{CDH}+\widehat{CEH}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)

\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)

mà \(\widehat{BAD}=\widehat{FCB}\)

nên \(\widehat{FEB}=\widehat{BED}\)

hay EB là tia phân giác góc FED

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

AB=AE

Do đó: ΔADB=ΔADE

b: Ta có: ΔADB=ΔADE

=>\(\widehat{ABD}=\widehat{AED}\)

=>\(\widehat{ABC}=\widehat{AEF}\)

Xét ΔEAF và ΔBAC có

\(\widehat{AEF}=\widehat{ABC}\)

AE=AB

\(\widehat{EAF}\) chung

Do đó: ΔEAF=ΔBAC

=>AF=AC

c: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC