cho tam giác ABC có 3 góc nhọn. tia phân giác AD; trung tuyến BE và đường cao CF cắt nhau tại 1 điểm. cmr : góc BAC > 45 độ
Nhờ m.n giải gùm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi giao điểm của AK và BN là Q
Ta có:
ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘
Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘
ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)
⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^
Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)
⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘
⇒ˆAQM=90∘⇒AQM^=90∘
Hay AK vuông góc với BN.
b. Theo câu a: AK vuông góc với BN tại Q
Mà BQ là phân giác của góc ˆIBKIBK^
Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B
Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.
Chứng minh tương tự: Q là trung điểm của MN
Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK
Vậy MINK là hình thoi.
xét tam giác abe va acf
co ;goc f=goc e =90
goc a chung
2 tam giuac dong dang
a) Xét ΔABE và ΔACE có:
\(\widehat{AEB}=\widehat{AFC}\) \(=90^0\)
\(\widehat{CAB}:chung\)
=> ΔABE∼ΔACE (g.g)
b) Xét ΔFHB và ΔEHC có:
\(\widehat{HFB}=\widehat{HEC}\) \(=90^0\)
\(\widehat{FHB}=\widehat{EHC}\) (2 góc đối đỉnh)
=> ΔFHB∼ΔEHC (g.g)
=> \(\frac{HF}{HE}=\frac{HB}{HC}\Leftrightarrow HF.HC=HB.HE\) (đpcm)
c) Theo câu a) ta có: ΔABE∼ΔACF
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét ΔBAC và ΔEAF có:
\(\widehat{BAC}:chung\)
\(\frac{AB}{AC}=\frac{AE}{AF}\) (cmtrn)
=> ΔBAC∼ΔEAF (c.g.c)
=> \(\widehat{AEF}=\widehat{ABC}\) (2 góc tương ứng)
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)
\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEB}=\widehat{BED}\)
hay EB là tia phân giác góc FED
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
AB=AE
Do đó: ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
=>\(\widehat{ABD}=\widehat{AED}\)
=>\(\widehat{ABC}=\widehat{AEF}\)
Xét ΔEAF và ΔBAC có
\(\widehat{AEF}=\widehat{ABC}\)
AE=AB
\(\widehat{EAF}\) chung
Do đó: ΔEAF=ΔBAC
=>AF=AC
c: Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{CED}\)
Ta có: ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC