K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

a) (1+5+52+53+...529)chia hết cho 6

Đặt (1+5+52+53+...529) = A

\(A=\left(1+5\right)+\left(5^2+5^3\right)+\left(5^4+5^5\right)....+\left(5^{28}+5^{29}\right)\)

\(A=\left(1+5\right)+5^2\left(5+1\right)+5^4\left(5+1\right)+...+5^{28}\left(5+1\right)\)

\(A=6+5^2.6+5^4.6+...+5^{28}.6\)

Vậy A chia hết cho 6

b) (1+3+3^2+3^3+...+3^29) chia hết cho 13

Đặt B= (1+3+3^2+3^3+...+3^29)

\(B=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{27}+3^{28}+3^{29}\right)\)

\(B=13+3^3\left(1+3+3^2\right)+....+3^{27}\left(1+3+3^2\right)\)

\(B=13+3^3.13+....+3^{27}.13\)

Vậy B chia hết 13

Câu c,d tương tự.Chúc bạn học tốt

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

2 tháng 10 2016

k cho minh nha bạn

c) =(1+2)+(2^2+2^3)+(2^4+2^5)+...+(2^119+2^200)

=1.(1+2)+2^2.(1+2)+2^4.(1+2)+...+2^119.(1+2)

=1.3+2^2.3+2^4+...+2^199.3   hiển nhiên sẽ chia hết cho 3

Câu d làm tương tự nhưng bạn phải giép 4 lũy thừa để được 15

11 tháng 10 2021

a) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)

\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)

8 tháng 11 2023

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

8 tháng 11 2023

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)

27 tháng 10 2021

Bài 1:

a: 76-6(x-1)=10

\(\Leftrightarrow x-1=11\)

hay x=12

c: \(5x+15⋮x+2\)

\(\Leftrightarrow x+2=5\)

hay x=3

27 tháng 10 2021

Bài 1:

a) 76 - 6 (x - 1) = 10

           6 (x - 1) = 76 - 10

           6 (x - 1) = 66

               x - 1 = 66 : 6

               x - 1 = 11

               x      = 11 + 1

               x = 12

b) 3 . 43 - 7 - 185

= 3 . 64 - 7 - 185

= 192 - 7 - 185

= 185 - 185

= 0

 

26 tháng 6 2017

\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)

Vậy \(A⋮18\)

\(B=1+3+3^2+...+3^{11}\)

Ta có: \(52=4\cdot13\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)

Vậy \(B⋮4\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)

Vậy \(B⋮13\)

\(4\)\(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)

Vậy \(B⋮52\)

\(C=3+3^3+3^5+...3^{31}\)

\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)

Vậy \(C⋮15\)

\(D=2+2^2+2^3+...+2^{60}\)

Tao có: \(21=3\cdot7;15=3\cdot5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(D⋮3\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)

Vậy \(D⋮5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)

Ta có:

\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)

\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)

Vậy \(D⋮15;D⋮21\)

26 tháng 6 2017

Mình chỉ làm mẫu 1 câu thui nha:

\(A=17^{18}-17^{16}\)

\(A=17^{16}.17^2-17^{16}.1\)

\(A=17^{16}\left(17^2-1\right)\)

\(A=17^{16}.288\)

\(A=17^{16}.16.18\)

\(A⋮18\left(đpcm\right)\)