Cho P(x)=-3x²+2x-1 Q(x)=3x²-2x-3 P(x)+Q(x); P(x)+Q(x) Tính dọc cho mih nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)
\(P_{\left(x\right)}=2x^3+x^2+x+2\)
\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q_{\left(x\right)}=x^3+x^2+x+1\)
b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)
\(=3x^3+2x^2+2x+3\)
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
Câu 1) Giả sử P(x)=(3x-2)(x+3)=0
=> Th1: 3x-2=0
Th2:x+3=0
=> Th1:x=3/2
Th2: x=-3
=> Tập hợp của P(x)={3/2;-3)
Câu 2)Q(1)=1^2-3.1+2
=1-3+2=0
\(P\left(x\right)=-3x^2+2x-1\)
\(+\) \(Q\left(x\right)=3x^2-2x-3\)
\(_{_{_{_{_{_{_{_{_{_{_{ }}}}}}}}}}}\)____________________________
\(0\) \(+\) \(0\) \(-4\)
Vậy \(P\left(x\right)+Q\left(x\right)=-4\)