K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2022

`a) 8x^2 - 8xy - 4x + 4y`

`= 8x ( x - y ) - 4 ( x - y )`

`= ( x - y ) ( 8x - 4 )`

__________________________

`b) x^3 + 10x^2 + 25x - xy^2`

`=x ( x^2 + 10x + 25 ) - xy^2`

`= x ( x + 5 )^2 - xy^2`

`= x [ ( x + 5 )^2 - y^2 ]`

`= x ( x + 5 - y ) ( x + 5 + y )`

________________________________

`c) x^2 + x - 6`

`= x^2 + 3x - 2x - 6`

`= x ( x + 3 ) - 2 ( x + 3 )`

`= ( x + 3 ) ( x - 2 )`

_______________________________

`d) 2x^2 + 4x - 16`

`= 2x^2 - 4x + 8x - 16`

`= 2x ( x - 2 ) + 8 ( x - 2 )`

`= ( x - 2 ) ( 2x + 8 )`

24 tháng 4 2022

a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).

b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2

= (a + 4 – b)(a + 4 + b).

tui chỉ làm dc này thui

a) Ta có: \(x^2-3x+xy-3y\)

\(=x\left(x-3\right)+y\left(x-3\right)\)

\(=\left(x-3\right)\left(x+y\right)\)

b) Ta có: \(x^3+10x^2+25x-xy^2\)

\(=x\left(x^2+10x+25-y^2\right)\)

\(=x\left(x+5-y\right)\left(x+5+y\right)\)

c) Ta có: \(x^3+2+3\left(x^3-2\right)\)

\(=4x^3-4\)

\(=4\left(x-1\right)\left(x^2+x+1\right)\)

7 tháng 11 2021

\(a,=3\left(x^2-2\right)\\ b,=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\\ c,=9x^2\left(x-y\right)-4\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\\ d,=x\left(x^2-2x-8\right)=x\left(x^2+2x-4x-8\right)=x\left(x+2\right)\left(x-4\right)\)

14 tháng 10 2021

a) = 2(x-2)^2

b) = 4(x - y) + (x - y)(x + y)

= (x - y)(x + y + 4)

c) = (x - 2)(x - 4)

14 tháng 10 2021

\(2\left(x-2\right)^2\)

\(\left(4+x+y\right)\left(x-y\right)\)

 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

11 tháng 12 2021

b: \(=x\left(x-3\right)\left(x^2+3x+9\right)\)

23 tháng 12 2022

a/ 2x^2 (x – 1) + 4x (1 – x)

= 2x^2(x  – 1) – 4x (x – 1)

= (x – 1)( 2x^2 – 4x)

=2x(x – 1)(x – 2)

 

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

3 tháng 10 2021

\(a,=x\left(x-2\right)+\left(x-2\right)=\left(x+1\right)\left(x-2\right)\\ b,=4\left(2x^2+x+1\right)\\ c,=x^2\left(2x^2+x+4\right)\)