K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNE vuông tại E và ΔMQF vuông tại F có

góc M chung

Do đó: ΔMNE\(\sim\)ΔMQF

Suy ra: MN/MQ=ME/MF

hay MN/ME=MQ/MF

b: Xét ΔMNQ và ΔMEF có 

MN/ME=MQ/MF

góc M chung

Do đó: ΔMNQ\(\sim\)ΔMEF

a: Xét ΔMEN vuông tại E và ΔMFQ vuông tại F có 

\(\widehat{FMQ}\) chung

Do đó: ΔMEN\(\sim\)ΔMFQ

b: Ta có: ΔMEN\(\sim\)ΔMFQ

nên \(\dfrac{ME}{MF}=\dfrac{MN}{MQ}\)

hay \(\dfrac{ME}{MN}=\dfrac{MF}{MQ}\)

Xét ΔMEF và ΔMNQ có 

\(\dfrac{ME}{MN}=\dfrac{MF}{MQ}\)

\(\widehat{FME}\) chung

Do đó: ΔMEF\(\sim\)ΔMNQ

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

0
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEj = 90

0

a: XétΔAMB vuông tại M và ΔANC vuông tại N có

góc A chung

Do đó: ΔAMB\(\sim\)ΔANC

b: Ta có: ΔANH vuông tại N

mà NI là đường trung tuyến

nên NI=AH/2(1)

Ta có: ΔAMH vuông tại M

mà MI là đường trung tuyến

nên MI=AH/2(2)

Từ (1) và (2) suy ra NI=MI(3)

Ta có: ΔNBC vuông tại N

mà NK là đường trung tuyến

nên NK=BC/2(4)

Ta có: ΔMBC vuông tại M

mà MK là đường trung tuyến

nên MK=BC/2(5)

Từ (4), (5) suy ra NK=MK(6)

Từ (3) và (6) suy ra IK là đường trung trực của MN

30 tháng 5 2020

i don ' t know

a: Xét ΔAHI vuông tại H và ΔACH vuông tại H có

góc HAI chung

=>ΔAHI đồng dạng với ΔACH

Xét ΔAHI vuông tại Ivà ΔHCI vuông tại I có

góc HAI=góc CHI

=>ΔAHI đồng dạng với ΔHCI

b: Xet ΔIHC có IM/IH=IK/IC

nên MK//HC

=>MK vuông góc AH

Xet ΔAHK có

KM,HI là đường cao

KM cắt HI tại M

=>M là trực tâm

=>AM vuông góc HK tại N

=>MN là đường cao của ΔHMK

17 tháng 4 2023

Cs hình ko ạ 😅