K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2022

hình bạn tự vẽ nha 

a) có △ABC cân tại A => AB=AC

     và BD⊥AC=> △ABD vuông tại D

          CE⊥AB=> △ ACE vuông tại E

Xét △ vuông ABD và △vuông ACE có:

             AB=AC

        góc A chung

=>△ vuông ABD = △vuông ACE( cạnh huyền góc nhọn)

b) Có : △ vuông ABD = △vuông ACE=> góc ABD = góc ACE

 mà :△ABC cân tại A => góc ABC = góc ACB

                   => góc ABD + góc DBC= góc ACE+ góc ECB

=> góc DBC= góc ECB hay góc HBC = góc HCB

=> △BHC cân tại H

c) có : △ vuông ABD = △vuông ACE=> AD=AE

                                                          =>△ADE cân tại A

           => góc ADE = góc AED = (1800- góc A )/2

mà △ABC cân tại A => góc ABC = góc ACB = ( 1800 - góc A )/2

=> góc ADE = góc ACB(= ( 1800 - góc A )/2)

lại có góc ADE và góc ACB là hai góc đồng vị

=> ED//BC

a: Xét ΔABE vuông tại E và ΔACD vuông tại D có 

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACD

b: \(CD=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: Ta có: ΔABE=ΔACD

nên AE=AD

d: Xét ΔDBC vuông tại D và ΔECB vuông tại E có

BC chung

DC=BE

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔBIC cân tại I

XétΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

Do đó: ΔABD\(\sim\)ΔACE

Suy ra: AD/AE=AB/AC

hay AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

Do đó; ΔADE\(\sim\)ΔABC

Suy ra: \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)

hay \(S_{ADE}=30\left(cm^2\right)\)

14 tháng 2 2022

bạn đăng từng bài nhé

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

\(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{\dfrac{9a^2}{2}}=\sqrt{\dfrac{18a^2}{4}}=\dfrac{3a\sqrt{2}}{2}\)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{18a^2}{4}:2=\dfrac{18a^2}{8}=\dfrac{9a^2}{4}\)

2: góc ABH+góc HBC=góc ABC

góc ACK+góc KCB=góc ACB

mà góc ABC=góc ACB; góc HBC=góc KCB

nên góc ABH=góc ACK

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

18 tháng 3 2022

a) Xét ∆BNC và ∆CMB có:
ABC = ACB ( ∆ABC cân tại A )
BC là cạnh chung
BN = CM ( N,M là trung điểm AB,AC và AB=AC )
∆BNC = ∆CMB (c_g_c)
 b) Xét ∆AMB và ∆ANC có:
BAC là góc chung
AN=AM ( giải thích như trên )
AB=AC ( ∆ABC cân tại A )
∆AMB = ∆ANC ( c g c )
Có ^ ABM = ACN
Mà ABC = ACB
KBC = KCB
∆KBC cân tại K                                                                                                                                    c) Ta có:
N là trung điểm AB
M là trung điểm AC
MN là đường trung bình ∆ABC cân
MN // BC xong rùii đó