\(\frac{3}{8\times11}+\frac{4}{11\times15}+\frac{5}{15\times20}+\frac{6}{20\times26}+\frac{7}{26\times33}+\frac{8}{33\times41}+\frac{9}{41\times50}=\frac{2}{5}-2\times x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
\(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+...+\dfrac{1}{a\times\left(a+4\right)}=\dfrac{50}{609}\)
\(\dfrac{1}{4}\times\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+...+\dfrac{4}{a\times\left(a+4\right)}\right)=\dfrac{50}{609}\)
\(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{a}-\dfrac{1}{a\times4}=\dfrac{50}{609}\div\dfrac{1}{4}\)
\(\dfrac{1}{3}-\dfrac{1}{a\times4}=\dfrac{200}{609}\)
\(\dfrac{1}{a\times4}=\dfrac{1}{3}-\dfrac{200}{609}\)
\(\dfrac{1}{a\times4}=\dfrac{1}{203}\)
\(a\times4=203\)
\(a=\dfrac{203}{4}\)
\(\dfrac{1}{3\times7}\)+\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\)
4\(\times\)( \(\dfrac{1}{3\times7}\) +\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\)) = \(\dfrac{50}{609}\) \(\times\)4
\(\dfrac{4}{3\times7}\)+ \(\dfrac{4}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{4}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\) \(\times\) 4
\(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\)-\(\dfrac{1}{15}\)+...+\(\dfrac{1}{a}\)-\(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)
\(\dfrac{1}{a+4}\) = \(\dfrac{1}{3}\) - \(\dfrac{200}{609}\)
\(\dfrac{1}{a+4}\) = \(\dfrac{1}{203}\)
a + 4 = 203
\(a\) = 203 - 4
\(a\) = 199
Đáp số: \(a\) = 199
\(\frac{5}{2}+\frac{4}{11}+\frac{1}{11}+\frac{1}{30}+\frac{13}{60}=\frac{5}{2}+\frac{1}{30}+\frac{13}{60}+\frac{4}{11}+\frac{1}{11}\)
\(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}+\frac{5}{11}=\frac{33}{12}+\frac{5}{11}\)
\(\frac{363}{132}+\frac{60}{132}=\frac{423}{132}=\frac{36}{11}\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
a,\(=\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{-4}{9}+\frac{7}{15}\)
\(\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{8}{15}+\frac{7}{15}\right)+\frac{-2}{11}\)
=-1+1+-2/11
=0+-2/11
=-2/11
b,\(=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-20}{41}+\frac{-21}{40}\right)+\frac{-5}{17}\)
=1+-1+-5/17
=0+-5/17
=-5/17
c,\(=\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{-2}{9}+-\frac{7}{9}\right)+\frac{16}{17}\)
=1+-1+16/17
=0+16/17
=16/17
d,\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
a.\(\frac{-5}{9}\)+\(\frac{8}{15}\)+\(\frac{-2}{11}\)+\(\frac{4}{-9}\)+\(\frac{7}{15}\)
=\(\frac{-5}{9}\)+\(\frac{4}{-9}\)+\(\frac{8}{15}\)+\(\frac{7}{15}\)+\(\frac{-2}{11}\)
=(\(\frac{-5}{9}\)+\(\frac{-4}{9}\))+(\(\frac{8}{15}\)+\(\frac{7}{15}\))+\(\frac{-2}{11}\)
=(-1)+1+\(\frac{-2}{11}\)
=0+\(\frac{-2}{11}\)
=\(\frac{-2}{11}\).
\(a,\)\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(x+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{41}-\frac{1}{45}\right)-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(x+\frac{8}{45}=-\frac{37}{45}\)
\(x=-\frac{37}{45}-\frac{8}{45}\)
\(x=-1\)
làm ơn giúp em giải bài toán này!!!!!!!!
Sorry , I can't do it .