K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

G= \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}\)

G= \(\frac{\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{98.99}{2}}{1.2+2.3+3.4+...+98.99}\)

G = \(\frac{\frac{1.2+2.3+...+98.99}{2}}{1.2+2.3+3.4+...+98.99}\)

G= \(\frac{1}{2}\)

22 tháng 2 2017

mh chịu thôi

24 tháng 2 2020

Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

2 tháng 8 2015

\(2A=\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)

\(2A=1\)

\(A=\frac{1}{2}\)

21 tháng 3 2019

Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài bạn làm :)

Gọi tổng trên là A
A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100
Ta xét :
1/1.2 ‐ 1/2.3 = 2/1.2.3; 1/2.3 ‐ 1/3.4 = 2/2.3.4;...; 1/98.99 ‐ 1/99.100 = 2/98.99.100
tổng quát: 1/n﴾n+1﴿ ‐ 1/﴾n+1﴿﴾n+2﴿ = 2/n﴾n+1﴿﴾n+2﴿.
Do đó: 2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= ﴾1/1.2 ‐ 1/2.3﴿ + ﴾1/2.3 ‐ 1/3.4﴿ +...+ ﴾1/98.99 ‐ 1/99.100﴿
= 1/1.2 ‐ 1/2.3 + 1/2.3 ‐ 1/3.4 + ... + 1/98.99 ‐ 1/99.100
= 1/1.2 ‐ 1/99.100
= 1/2 ‐ 1/9900
= 4950/9900 ‐ 1/9900
= 4949/9900.
Vậy A = 4949 / 9900

19 tháng 8 2017

Bn làm sai r . kết quả là \(\frac{101}{297}\) nhưng mik ko bt cách giải thôi

5 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}\)

\(A=\frac{5}{6}\)

5 tháng 5 2019

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}\)

\(A=\frac{5}{6}\)

\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(B=\frac{100}{2}\)

14 tháng 3 2018

Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!

22 tháng 3 2020

b) Em tham khảo: Câu hỏi của lê chí dũng - Toán lớp 6 - Học toán với OnlineMath

vâng ạ nhưng e cx đg cần câu tl phần a

9 tháng 3 2016

\(F=\frac{1+\frac{1.2}{2}+\frac{3.4}{2}+...+\frac{100.101}{2}}{1.2+2.3+...+99.100}\)

   \(=\frac{1+1.2+3.4+...+100.101}{\left(1.2+2.3+...+99.100\right).2}\)

Tự làm tiếp nhá !

11 tháng 8 2019

\(A=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot...\cdot1-\frac{2}{99\cdot100}\)

\(2A=1-\left(\frac{1}{2\cdot3}\cdot\frac{1}{3\cdot4}\cdot\frac{1}{4\cdot5}\cdot...\cdot\frac{1}{99\cdot100}\right)\)

\(2A=1-\left(\frac{1}{2}-\frac{1}{3}\cdot\frac{1}{3}-\frac{1}{4}\cdot\frac{1}{4}-\frac{1}{5}\cdot...\cdot\frac{1}{99}\cdot\frac{1}{100}\right)\)

\(2A=1-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(2A=1-\frac{49}{100}\)

\(2A=\frac{51}{100}\)

\(A=\frac{51}{100}:2\)

\(A=\frac{51}{200}\)