K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2022

a.

Do \(AB=AC\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow AM\) là trung tuyến đồng thời là đường cao

\(\Rightarrow AM\perp BC\) (1)

Mà \(\left\{{}\begin{matrix}AD\perp AB\left(gt\right)\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABC\right)\Rightarrow AD\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(ADM\right)\)

b.

Từ A kẻ \(AE\perp DM\) (E thuộc DM)

Do \(BC\perp\left(ADM\right)\Rightarrow BC\perp AE\)

\(\Rightarrow AE\perp\left(BCD\right)\Rightarrow AE=d\left(A;\left(BCD\right)\right)\)

\(BC=\sqrt{AB^2+AC^2}=5\sqrt{2}\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{2}}{2}\)

Hệ thức lượng trong tam giác vuông ADM:

\(AE=\dfrac{AD.AM}{\sqrt{AD^2+AM^2}}=\dfrac{5\sqrt{3}}{3}\)

c.

Do \(AD\perp\left(ABC\right)\) theo cmt \(\Rightarrow AM\) là hình chiếu vuông góc của DM lên (ABC)

\(\Rightarrow\widehat{DMA}\) là góc giữa DM và (ABC)

\(tan\widehat{DMA}=\dfrac{AD}{AM}=\sqrt{2}\Rightarrow\widehat{DMA}\approx54^044'\)

NV
23 tháng 4 2022

undefined

16 tháng 5 2018

Giải bài 5 trang 99 sgk Hình học 12 | Để học tốt Toán 12

8 tháng 3 2018

Đáp án A

Chọn hệ trục tọa độ Oxy 

A D = 2 a tan 60 o = 2 a 3

Từ M kẻ MH song song với AC ta có MH =a

 

PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1

 Vậy khoảng cách từ P ( 0 ; 4 a ; 0 ) đến (BCD) là:

20 tháng 7 2017

 

 

 

 

 

 

Chọn hệ trục tọa độ Oxyz. Có O = A, AB = Ox, AC = Oy, AD = Oz, AD = 2 α tan 60 o = 2 a 3 , N H = 1 2 - 1 3 B C = 1 6 B C = 1 2 N C

Từ M kẻ MH song song với AC ta có MH = a; CP = 2MH = 2a ⇒ AP = 4a

PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1 . Vậy khoảng cách từ P ( 0;4a;0 ) đến (BCD) là:

1 1 4 a 2 + 1 4 a 2 + 1 12 a 2 = a 12 7 = 2 a 21 7

Đáp án cần chọn là A

 

29 tháng 6 2019

Đáp án A

13 tháng 6 2018

Chọn đáp án B.

31 tháng 3 2017

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

CMR: BC ⊥ (ADH) và DH = a.

● Δ ABC đều, H là trung điểm BC nên AH  BC, AD  BC

⇒ BC ⊥ (ADH) ⇒ BC ⊥ DH.

⇒ DH = d(D, BC) = a

29 tháng 1 2019

Đáp án B

Ta có    A B 2 + A C 2 = B C 2 ⇒ tam giác  ABC vuông tại A.

Trong (ABC) kẻ AM vuông góc tại   M ⇒ 1 A M 2 = 1 A B 2 + 1 A C 2

Trong (DAM) kẻ A H ⊥ D M  tại H.

Ta có  

  D A ⊥ B C ; A M ⊥ B C ⇒ D A M ⊥ B C ⇒ D A M ⊥ D B C

D A M ⊥ D B C D A M ∩ D B C = D M A H ⊂ D A M ; A H ⊥ D M ⇒ A H ⊥ D B C

  ⇒ d A ; D B C = A H

Tam giác DAM vuông tại A có AH là đường cao

⇒ 1 A H 2 = 1 A M 2 + 1 A D 2 = 1 A B 2 + 1 A C 2 + 1 A D 2 = 1 3 2 + 1 4 2 + 1 4 2 = 17 72 ⇒ A H = 12 34

4 tháng 4 2017

23 tháng 11 2019