K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

11 tháng 7 2019

A B C N M

a) Xét tam giác vuông ABM và tam giác vuông NCA có:

NC=AB( gt)

CA=BM ( gt)

=> Tam giác ABM = Tam giác NCA 

b) Xét  tam giác vuông NCA và tam giác vuông BAC có:

AC chung 

NC=BA

=> Tam giác NCA =Tam giác BAC

=> ^NAC =^BCA

mà hai góc trên ở vị trí so le trong

=> NA//BC (1)

c) Xét tam giác vuông ABC và tam giác vuông BMA có:

AB chung

AC=BM

=> Tam giác vuông ABC = Tam giác vuông BMA

=> ^MAB=^ABC

mà hai góc trên ở vị trí so le trong 

=> MA//CB (2)

từ (1) , (2) => N, A, M thẳng hàng 

Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)

=> A là trung điểm MN

13 tháng 12 2021

a, vì ab =ac (gt)

=> abc là tam giác cân tại a

vì tam giác abc cân tại a

=> góc b = góc c

vì m là trung điểm bc

=> bm = mc

xét tam giác amb và tam giác amc có

bm =mc

góc b = góc c

ab = ac

=> tam giác amb = tam giác amc (cgc)

 

13 tháng 12 2021

b, vì 2 tam giác chứng minh ở câu a bằng sau

=> bam = cam( cặp góc tương ứng)

=> am là tia p/g của bac

1 tháng 3 2021
Nối D với E Theo bài , BM là trung điểm BA nên BC = 2BM = 2 × 50 = 100 CM Xét tam giác DEA và tam giác BCA có AD = AB (giả thiết) Góc DAE = góc BAC( 2 góc đối đỉnh ) EA = AC ( giả thiết ) => Tam giác DEA = Tam giác BCA ( cạnh - góc - cạnh ) => DE = BC ( 2 cạnh tương ứng ) Mà BC = 100 CM => DE = 100 CM
29 tháng 12 2020

a,Xét tam giác ABM với ACM có; AM chung AB=AC(gt) BM=MC(gt) =>tam giác ABM=ACM (c.c.c)(đpcm) b,Vì 2 tam giác trên bằng nhau =>AMB=AMC Mà 2 góc kề bù =>góc AMB=AMC=90 độ =>AM vuông góc BC(đpcm) c,Xét tam giác DBM vs DCM có:DM chung DB=DC(gt) BM=MC(gt) =>tam giác DBM=DCM(c.c.c) Mà 2 góc kề bù=>DBM=DCM=90 độ =>3 điểm A,M,D thẳng hàng(đpcm)

a: Xét ΔABM và ΔACM có

AB=AC

AM chug

BM=CM

Do đó: ΔABM=ΔACM

b:

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét ΔAMC vuông tại M và ΔBMD vuông tại M có 

MC=MD

MA=MB

Do đó: ΔAMC=ΔBMD

Suy ra: AC=BD

c: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của CB

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

d: Xét tứ giác ABCI có

AI//BC

AI=BC

Do đó: ABCI là hình bình hành

Suy ra: CI//AB

mà CD//AB

và CI,CD có điểm chung là C

nên C,I,D thẳng hàng

30 tháng 12 2020

A B C M a) Xét tam giác BAM và tam giác CAM có : BA = CA (GT) Góc BAM=góc CAM ( vì : AM là tia phân giác của góc BAC ) AM là cạnh chung Do đó: tam giác BAM = tam giác CAM(c.g.c) b) vì tam giác BAM = tam giác CAM (câu a) => góc AMB = góc AMC ( hai góc tương ứng) Mà : hai góc đó là hai góc kề bù Nên: Góc AMB=góc CAM = 90 độ => AM vuông góc với BC. D C) Xét tam giác BAD và tam giác CAD có: AB=AC( GT) BD=CD(GT) AD là cạnh chung =>Do đó :tam giác BAD=tam giác CAD(c.c.c) => AD là tia phân giác của góc A ( vì góc BAD=góc CAD) Nên: ba điểm A,D,M thẳng hàng => AM là đường trung trực của BC => AD cũng là đường trung trực của BC