Help me!!!
1 ) Cho \(\Delta\)ABC có AB = 18 cm , AC=12cm . Gọi H là chân đường vuông góc kẻ từ B đến tia phân giác của góc A . Gọi M là trung điểm BC . Tính HM
Các bạn áp dụng đường trung bình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là giao điểm của BH và AC
AD là tia phân giác góc A
AH là đường cao của ΔABE
AH là tia phân giác của \(\widehat{BAE}\)
\(\Rightarrow\Delta ABE\) cân tại A
\(\Rightarrow AB=AE\)
Theo đề ra: AB = 12cm => AE = 12cm
\(EC=AC-AE=18-12=6cm\)
AH là đường cao của ΔABE cân tại A
=> AH là trung tuyến của ΔABE
=> H là trung điểm của BE
Ta có: M là trung điểm của BC
=> HM là đường trung bình của ΔBEC
\(\Rightarrow HM=\frac{EC}{2}=\frac{6}{2}=3cm\)
c/m Tam giác ABH= Tam giác AKH (g-c-g)
=>AB=AK=18cm ; H t/đ BK
=>HM là đường trung bình của tam giác BKC.
=>2HM=KC=AC-AK=18-12=6cm
=>HM=3cm.
Tự viết giả thiết và kết luận nha bạn
Giải
Ta gọi I là giao điểm của tia BH và AC (Tự vẽ thêm I nha)
Xét tam giác ABI ta có : AH vừa là đường phân giác
AH vừa là đường cao
=> tam giác ABI cân tại A
=> AB=AI=12cm
Ta có : AI+IC=18 cm
=> IC= 18cm + AI=18 cm -12 cm = 6 cm
Trong tam giác cân ABI có AH vừa là đường cao vừa là đường phân giác => AH là đường trung tuyến của tam giác ABI
=> H là trung điểm của BI
Xét tam giác BIC có : + BH=HI(cmt)
+ BM=MC(gt)
=> MH là đường trung bình của tam giác BIC
=> MH= 1/2 x IC =>MH= 6/2 = 3cm
Vậy MH = 3 cm
Gọi D là giao điểm của BH với AC
Tam giác ABD có AH là đg cao đồng thời là đường phân giác => ABD cân tại A
=>AC=AB=18cm
=>CD=AD-AC=18-12=6cm
Xét tam giác BCK có M là TĐ của BC, H là trung điểm BD(do tam giác ABD cân tại A nên đg cao AH đồng thời là đg trung tuyến)
=> MH là đg trung bình của tam giác BCD
=>MH= \(\frac{1}{2}\)CD =3cm
bn j ơi ! kết quả là :
\(MH=\frac{1}{2}CD=3cm\)
Đáp số : .....