K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

2x2 + y2 + 2xy + 4x = x2 + x2 + y2 + 2xy + 4x + 4 - 4 = (x2 + 2xy + y2) + (x2 + 4x + 4) - 4 = (x + y)2 + (x + 2)2 - 4 \(\ge\)-4

Đẳng thức xảy ra khi: (x + y)2 = 0 và (x + 2)2 = 0   => x = -2 và y = 2

Vậy GTNN cảu 2x2 + y2+ 2xy + 4x là -4 khi x = -2 và y = 2

mk chúa ghét và cx chúa dốt loại tìm GTNN !! ^^

67878768769769674635362434645645657567657856853245

a: \(C=2\left(x^2+\dfrac{5}{2}x-\dfrac{1}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{33}{16}\right)\)

\(=2\left(x+\dfrac{5}{4}\right)^2-\dfrac{33}{8}>=-\dfrac{33}{8}\)

Dấu '=' xảy ra khi x=-5/4

b: \(=x^2+4x+4+y^2-6y+9-6\)

\(=\left(x+2\right)^2+\left(y-3\right)^2-6>=-6\)

Dấu '=' xảy ra khi x=-2 và y=3

21 tháng 7 2017

A)\(A=2.x^2-4.x+10\)

\(2A=4.x^2-8x+20\)

\(2A=4.x^2-2.2x.2+2^2+16\)

\(2A=\left(2x-2\right)^2+16\ge16\forall x\)

\(A=8\)

DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)

VẬY GTNN CỦA A LÀ 8 VỚI x=1

C)\(\left(x-1\right)\left(x+2\right)+3x+5\)

\(C=x^2+2x-x-2+3x+5\)

\(C=x^2+4x+3\)

\(4C=4x^2+16x+12\)

\(4C=4x^2+2.2x.4+4^2-4\)

\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)

\(C=-1\)

DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)

VẬY GTNN CỦA C  LÀ -1 VỚI X=-2

XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI

22 tháng 9 2019

\(K=2x^2+2y^2+2xy-6x-6y-13\)

\(K=2x^2+2y^2+2xy-6x-6y-\left(2\cdot3+6\cdot1+1\right)\)

\(K=\left(2x^2+2y^2+2xy-2\cdot3\right)-\left(6x+6y+6\cdot1\right)-1\)

\(K=2\left(x^2+y^2+xy-3\right)-6\left(x+y+1\right)-1\)

\(K=2\left(x^2+y^2+xy-3\right)-2\cdot3\left(x+y+1\right)-1\)

\(K=2\left(x^2+y^2+xy-3\right)-2\cdot\left(3x+3y+3\cdot1\right)-1\)

\(K=2\left(x^2+y^2+xy-3-3x-3y-3\right)-1\)

\(K=2\left(x^2+y^2+xy-3x-3y-3-3\right)-1\)

\(K=2\left(x^2+y^2+xy-3x-3y-6\right)-1\)

\(K=2\left(x^2+y^2+xy-3x-3y\right)-2\cdot6-1\)

\(K=2\left(x^2+y^2+xy-3x-3y\right)-13\)

\(K=2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]-13\)

Để \(K\) là \(GTNN\) thì \(2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]\) phải có \(GTNN;\)

Để \(2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]\) là \(GTNN\)( không xét \(x\cdot y\))  thì ta có:

\(-3y+y^2\inℤ\) và phải có \(GTNN\) (1)

\(3x-x^2\inℕ\) và phải có \(GTLN\) (2)

Để thỏa mãn (1) thì \(y\in\left\{1,2\right\}\) (do \(-3\cdot1+1^2=-3\cdot2+2^2\)) và \(x\in\left\{1,2\right\}\) vì lý do tương tự (1).

Nhưng (1) cần càng nhỏ càng tốt và (2) thì ngược lại\(\Rightarrow y=1;x=2\) (chỉ mới là giả thuyết do chưa xét \(x\cdot y\))

Xét với mọi trường hợp:

K trong mọi trường hợp \(x\ne2;y\ne1\)luôn lớn hơn K trong trường hợp \(x=2;y=1\Rightarrow\) chắc chắn \(x=2;y=1\)

Thay \(x\) trong biểu thức của đề bài thành \(1\)\(y\) thành \(2\);giải ra được \(GTNN\) của \(K=\left(-17\right)\)

13 tháng 11 2016

\(M=x^2+2y^2+2xy-2x-3y+1\)

=> \(M=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-3y+1\)

=> \(M=\left(x+y-1\right)^2-y^2+2y-1+2y^2-3y+1\)

=> \(M=\left(x+y-1\right)^2+y^2-y\)

=> \(M=\left(x+y-1\right)^2+y^2-2y\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\)

Có \(\left(x+y-1\right)^2\ge0\)với mọi x, y

\(\left(y-\frac{1}{2}\right)^2\ge0\)với mọi y

=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)với mọi x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-\frac{1}{2}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)

KL: Mmin = \(\frac{-1}{4}\)<=> \(x=y=\frac{1}{2}\)

13 tháng 11 2016

cảm ơn Giang