K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2022

loading...

2 tháng 7 2019

A B C M N H

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AB=AC(tam giác ABC cân tại A)

                                     AH: chung

Do đó:tam giác ABH= tam giác ACH(ch-cgv)

b)Xét tam giác BMH vuông tại M và tam giác CNH vuông tại N có:

                                     BH=CH(tam giác ABH=tam giác ACH)

                                      góc B=góc C(tam giác ABC cân tại A)

Do đó:tam giác BMH=tam giác CNH(ch-gn)

#Ở câu b bạn có thể chọn trường hợp ch-cgv cũng đc hjhj:)))<3#

c)bn cho thiếu dữ kiên nên mk k làm đc nhé tks

P/S: chúc bạn học tốt..........boaiiii>.< moa<3

                      

12 tháng 5 2017

A B C E F G H 1 2

a) \(\Delta ABC\) cân tại A có AH là đường cao đồng thời là đường trung tuyến của tam giác

=> HB = HC = \(\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

\(\Delta ABH\) vuông tại H, theo định lí Py-ta-go

Ta có: AB2 = AH2 + HB2

=> AH2 = AB2 - HB2

AH2 = 52 - 32

AH2 = 16

=> AH = \(\sqrt{16}=4\left(cm\right)\)

b) Hai đường trung tuyến BE và CF cắt nhau tại G

=> G là trọng tâm của \(\Delta ABC\)

Mà đường trung tuyến AH đi qua trọng tâm G của \(\Delta ABC\)

Do đó: A, G, H thẳng hàng (đpcm)

c) \(\Delta ABC\) có AH là đường cao đồng thời là đường phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét hai tam giác ABG và ACG có:

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A_1}=\widehat{A_2}\) (cmt)

AG: cạnh chung

Vậy: \(\Delta ABG=\Delta ACG\left(c-g-c\right)\)

Suy ra: \(\widehat{ABG}=\widehat{ACG}\) (hai góc tương ứng).

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔHAC\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{6}=\dfrac{8}{10}=\dfrac{4}{5}\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

a) Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{ACH}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Ta có: ΔABE=ΔACF

nên BE=CF

Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

CF=BE

Do đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)

ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

a: BC=10cm

AH=4,8cm

5 tháng 11 2021

mình cần câu b với c ạ 

 

a: Xét ΔAKB vuông tại K và ΔAFC vuông tại F có

AB=AC

góc A chung

=>ΔAKB=ΔAFC

b: Xét ΔABC có

BK,CF là đường cao

BK cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC tại I

=>AI là trung trực của BC