K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA+AF=BF

BE+EC=BC

mà BA=BE; AF=EC

nên BF=BC

=>ΔBFC cân tại B

mà BD là phângíac

nên BD vuông góc CF

c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc EDC+góc FDC=180 độ

=>E,D,F thẳng hàng

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

24 tháng 4 2022

CẢM ƠN

NHA LOVE

3 tháng 5 2016

2 hoặc 3

Mình xin phép sửa lại đề (ý c,)

c)    Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh `Δ`BFC cân

`a,`

Xét `2\Delta` vuông `ABD` và `EBD`:

`\text {BD chung}`

$\widehat {ABD} = \widehat {EBD} (\text {tia phân giác} \widehat {ABE})$

`=> \Delta ABD = \Delta EBD (ch-gn)`

`b,`

Vì `\Delta ABD = \Delta EBD (a)`

`-> \text {DA = DE (2 cạnh tương ứng) (1)}`

Xét `\Delta DEC`:

$\widehat {DEC} = 90^0$

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`-> \text {DC là cạnh lớn nhất}`

`-> \text {DC > DE (2)}`

Từ `(1)` và `(2)`

`-> \text {DC > DA}`

`c,`

Xét `2\Delta` vuông `ABC` và `AFC`:

`\text {AB = AF (gt)}`

$\widehat {BAC} = \widehat {FAC} (=90^0)$

`\text {AC chung}`

`=> \Delta ABC = \Delta AFC (c-g-c)`

`-> \text {BC = FC (2 cạnh tương ứng)}`

Xét `\Delta BFC`:

`\text {BC = FC}`

`-> \Delta BFC` cân tại C.

`d,`

Ta có: FE là đường cao của `\Delta BFC`

`@` Theo tính chất của `\Delta` cân với các đường trong `\Delta`

`-> \text {FE đồng thời cũng là đường trung trực}`

`-> \text {Ba điểm F, D, E thẳng hàng.}`

loading...

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: DA=DE
DE<DC

=>DA<DC

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>DF=DC

=>ΔDFC cân tại D

 

13 tháng 5 2021

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

3 tháng 5 2016

C2 

Xét tam giác ADF và tam giác EDC có : 

DA = DE ( Cmt ) 

DEF = DEC 

AF = EC ( Cmt ) 

=) ........ ( c.g.c ) 

=) ADF = EDC ( ...)

mà :  EDC + EDA = 180 ĐỘ

=)  EDA + ADF = 180 độ 

=) E D F thẳng hàng 

k cko mk ddi

2 tháng 5 2016

xem lại đề : sao BD _|_ BC đc?