cho a,b,c thuộc Z thỏa mãn : a-b+c = 123. Tìm số dư của phép chia a2-b2+c2 cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
\(\left(a-b+c\right)+\left(a+b+c\right)=2\left(a+c\right)\) chẵn
\(\Rightarrow a-b+c\) và \(a+b+c\) cùng tính chẵn lẻ
Mà \(a-b+c=123\) lẻ \(\Rightarrow a+b+c\) lẻ
Ta có:
\(a-b+c=123\Rightarrow\left(a-b+c\right)\left(a+b+c\right)=123\left(a+b+c\right)\)
\(\Rightarrow\left(a+c\right)^2-b^2=123\left(a+b+c\right)\)
\(\Rightarrow a^2+c^2-b^2=123\left(a+b+c\right)-2ac\)
\(123\left(a+b+c\right)\) lẻ và \(-2ac\) chẵn
\(\Rightarrow123\left(a+b+c\right)-2ac\) lẻ
\(\Rightarrow a^2-b^2+c^2\) lẻ
Hay \(a^2-b^2+c^2\) chia 2 dư 1
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)