Tìm tất cả các số tự nhiên mà khi gạch bỏ đi một chữ số thì số đó giảm 71 lần
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 3 2016
các số như vậy
710
7100
71000
710000
7100...0000...
Chữ số bị gạch là chữ số 0 bất kì của số đó
23 tháng 4 2016
Số cần tìm là: 17002.
Gọi ƯCLN ( a;b;c)= 1
Ta có:
1+22+342=9903 ( loại vì n là số có 1 chữ số).
Vậy n=9998
\.
2 tháng 4 2016
các số như vậy
710
7100
71000
710000
7100...0000...
Chữ số bị gạch là chữ số 0 bất kì của số đó
LD
3
7 tháng 5 2016
Các số đó là
570
5700
57000
570000
.....
Chũ số bị gạch là chữ số 0 bất kì của số đó
Không biết copy lại việc gì phải chép
Gọi số cần tìm là X=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯xy...tbanan−1...a1X=xy...tbanan−1...a1¯,b là chữ số cần gạch
Đặt A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯xy...t;Y=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯xy...tanan−1...a1A=xy...t¯;Y=xy...tanan−1...a1¯
Ta có:X=71Y
⇔A×10n+1+b×10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1=71×(A×10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1)⇔A×10n+1+b×10n+an...a1¯=71×(A×10n+an...a1¯)
⇔b×10n=61A×10n+70¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1⇔b×10n=61A×10n+70an...a1¯
⇒b×10n>61A×10n⇒b×10n>61A×10n
mà0<b≤90<b≤9
⇒A=0⇒A=0
⇒b×10n=70¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1⇒b×10n=70an...a1¯
Chữ số bị gạch là chữ số đầu tiên từ trái qua
mà (10n,7)=1(10n,7)=1
⇒b⋮7⇒b⋮7
⇒b=7⇒b=7
Vậy bài toán đã được giải quyết, số cần tìm là X=71000000... (với n-1 số 0, nϵN∗ϵN∗)chữ số bị gạch đi là 7