K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề ΔAMC

Xét ΔAMC và ΔDMB có

góc MCA=góc MBD

MC=MB

góc AMC=góc DMB

=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB

=>AC=BD

=>BD=AB

c: Xét ΔBAD có

BM,DP là trung tuyến

BM cắt DP tại O

=>O là trọng tâm

a) Xét ΔAMC và ΔDMB có

\(\widehat{ACM}=\widehat{DBM}\)(hai góc so le trong, AC//BD)

MC=MB(M là trung điểm của BC)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

Do đó: ΔAMC=ΔDMB(g-c-g)

b) Ta có: ΔAMC=ΔDMB(cmt)

nên AC=DB(hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AB=BD

12 tháng 4 2022

undefined

22 tháng 10 2023

a: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)

Xét tứ giác APMQ có

AP//MQ

AQ//MP

Do đó: APMQ là hình bình hành

Hình bình hành APMQ có AM là phân giác của góc PAQ

nên APMQ là hình thoi

b: Xét ΔABC có

M là trung điểm của BC

MP//AC

Do đó: P là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MQ//AB

Do đó: Q là trung điểm của AC

Xét ΔABC có

P,Q lần lượt là trung điểm của AB,AC

=>PQ là đường trung bình của ΔABC

=>PQ//BC

c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA

=>MQ là đường trung bình của ΔABC

=>MQ//AB và \(MQ=\dfrac{AB}{2}\)

mà \(MQ=\dfrac{MD}{2}\)

nên MD=AB

MQ//AB

=>MD//AB

Xét tứ giác ABMD có

AB//MD

AB=MD

Do đó: ABMD là hình bình hành

d: Xét tứ giác AMCD có

Q là trung điểm chung của AC và MD

Do đó: AMCD là hình bình hành

Hình bình hành AMCD có \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD

=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)

22 tháng 10 2023

Sao MQ= MD/2 ạ?

a) Xét tứ giác ADME có 

ME//AD(gt)

MD//AE(gt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ADME là hình chữ nhật(cmt)

nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)

mà ED=5cm(gt)

nên AM=5cm

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)

c) Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(AH⊥BC tại H)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Ta có: ΔAHC vuông tại H(AH⊥BC tại H)

mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên HE=AE

Xét ΔEAD và ΔEHD có 

EA=EH(cmt)

ED chung

AD=HD(cmt)

Do đó: ΔEAD=ΔEHD(c-c-c)

\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)

mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

nên \(\widehat{EHD}=90^0\)

hay HD⊥HE(đpcm)

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng