cho tam giác ABC cân tại A có góc A=20, BC=2cm. Trên tia AB lấy D sao cho góc ACD=10. Tính AD
Ai giải mình K cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem câu trả lời của Lưu Đức Mạnh tại : olm.vn/hoi-dap/question/976092.html
Lyn Lee bạn ấn vào đây
Câu trả lời có ở trong câu hỏi của bạn này đó
Bên hh nha
AD =2cm
muốn tính AD dựa vào dg tron ngoai tiep cua tg ABC
( chỉ vì bai nay ma tui phai thi lai v2 vi muon 300đ)
Trên mặt phẳng bờ là đường thẳng BC chứa điểm A vẽ \(\Delta EBC\)đều. Gọi H là giao điểm của AE và CD.
Xét \(\Delta ABC\)cân tại A có \(\widehat{BAC}=20^o\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}=80^o\)
Ta có:
\(\widehat{ECD}=\widehat{ACB}-\widehat{ECB}-\widehat{ACD}\)
\(\widehat{ECD}=80^o-60^o-10^o=10^o\)
Xét \(\Delta AEB\) và \(\Delta AEC\)ta có:
AE là cạnh chung
AB = AC ( \(\Delta ABC\)cân tại A)
EB = EC ( \(\Delta EBC\)đều)
\(\Rightarrow\)\(\Delta AEB=\Delta AEC\left(c-c-c\right)\)
\(\Rightarrow\)\(\widehat{EAB}=\widehat{EAC}\)(2 góc tương ứng)
\(\Rightarrow\)AE là tia phân giác của \(\widehat{BÃC}\)
\(\Rightarrow\)\(\widehat{EAB}=\widehat{EAC}=\frac{\widehat{BAC}}{2}=\frac{20^o}{2}=10^o\)
Ta có:
\(\widehat{HAC}=\widehat{HCA}\left(=10^o\right)\)
\(\Rightarrow\)\(\Delta HAC\)cân tại H
\(\Rightarrow\)\(HA=HC\)
Xét \(\Delta HAD\)và \(\Delta HCE\) TA CÓ:
\(HA=HC\left(cmt\right)\)
\(\widehat{AHD}=\widehat{CHE}\) ( 2 góc đối đỉnh)
\(\widehat{DAH}=\widehat{ECH}\left(=10^o\right)\)
\(\Rightarrow\)\(\Delta HAD=\Delta HCE\left(g-c-g\right)\)
\(\Rightarrow\)\(AD=EC\)(2 cạnh tương ứng)
Mà \(EC=BC\)( \(\Delta EBC\)đều)
Nên \(AD=BC\)
Mặt khác \(BC=2cm\left(gt\right)\)
\(\Rightarrow\)\(AD=2cm\)
Cho a, b, c thỏa mãn:
1a+1b+1c=1a+b+c1a+1b+1c=1a+b+c
Chứng minh (a+b)(b+c)(c+a) =0
chich xa giao
Bạn làm dc bài này chưa ?