Tìm Giá trị lớn nhât hoặc nhỏ nhất cho biểu thức sau:
D=2x^2+y^2+6x+2y+2xy+2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2+2xy-6x-2y+10\)
<=>\(A=y^2+2y\left(x-1\right)+2x^2-6x+10\)
<=>\(A=y^2+2y\left(x-1\right)+\left(x^2-2x+1\right)+\left(x^2-4x+4\right)+5\)
<=>\(A=y^2+2y\left(x-1\right)+\left(x-1\right)^2+\left(x-2\right)^2+5\)
<=>\(A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\)
=> A đạt giá trị nhỏ nhất là 5 khi \(\hept{\begin{cases}\left(y+x-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y+x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Lời giải:
$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$
$=(x+y)^2+x^2+y^2-6x-6y+11$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$
$\Leftrightarrow x=y=1$
\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)
\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
A=-x^2+2xy-y^2-x^2+4x-4-36
=-(x-y)^2-(x-2)^2-36<=-36
Dấu = xảy ra khi x=y=2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
D=2x2+y2+6x+2y+2xy+2017
=x2+4x+4+x2+y2+1+2x+2y+2xy+2012
=(x+2)2+(x+y+1)2+2012\(\ge\)2012
Dấu = khi x=-2 và y=1
Vậy MinA=2012 khi x=-2 và y=1