số x thỏa mãn 2/3x=2/5 là
A.5/3 B.3/5 C.4/15 D.15/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/15 : 4/7 < x < 2/5 x 10/3
7/15 < x < 4/3
Vậy số tự nhiên x chỉ có thể là 1 nha .
4)
Ta có x \(\in\)B(5) = {...; -5; 0; 5; 10; 15; ...}
và -17 < x < 15
=> x \(\in\){-15; -10; 5; 0; 5; 10}
Tổng các số nguyên x thoả mãn điều kiện cho trước là:
(-15) + (-10) + (-5) + 0 + 5 + 10 = (-15) + (-10 + 10) + (-5 + 5) + 0 = -15
Mk thấy bài 1 và 2 dễ nên bạn tự làm nha
3
+)Ta có n-2 \(⋮\)n-2
=>2.(n-2)\(⋮\)n-2
=>2n-4\(⋮\)n-2(1)
+)Theo bài ta có:2n+1\(⋮\)n-2(2)
+)Từ (1) và (2)
=>(2n+1)-(2n-4)\(⋮\)n-2
=>2n+1-2n+4\(⋮\)n-2
=>5\(⋮\)n-2
=>n-2\(\in\)Ư(5)={\(\pm\)1;\(\pm\)5}
+)Ta có bảng:
n-2 | -1 | 1 | -5 | 5 |
n | 1\(\in\)Z | 3\(\in\)Z | -3\(\in\)Z | 7\(\in\)Z |
Vậy n\(\in\){1;3;-3;7}
Chúc bn học tốt
a. 5.(–8).( –2).(–3) b. 4.(–5)2 + 2.(–5) – 20
=(-5).8.(-2).(-3) ={(-5).2} {4+1}-20
=(-5)(-2)(-3).8 =(-10).5-20=-50-20=-70
=10.(-24)=-240
\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\)
=>\(x^2+x+1=4x\)
=>\(x^2-3x+1=0\)
\(\dfrac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)
\(=\dfrac{x^5-3x^4+x^3+3x^4-9x^3+3x^2+5x^3-15x^2+5x+12x^2-36x+12+21x}{x^4+7x^2+15}\)
\(=\dfrac{x^3\left(x^2-3x+1\right)+3x^2\left(x^2-3x+1\right)+5x\left(x^2-3x+1\right)+12\left(x^2-3x+1\right)+21x}{x^4+7x^2+15}\)
\(=\dfrac{21x}{x^4-3x^3+x^2+3x^3-9x^2+3x+15x^2-45x+15+42x}\)
\(=\dfrac{21x}{x^2\left(x^2-3x+1\right)+3x\left(x^2-3x+1\right)+15\left(x^2-3x+1\right)+42x}\)
\(=\dfrac{21x}{42x}=\dfrac{1}{2}\)
B
B