57.
C.8^4×16^5×32
D.27^4×81^10
58.so sánh
A.10^30 và 2^100
B.5^40.620^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 410. 230=220.230=250
b,925.274.813= 350.312.312=374
Tương tự các câu khác....
a, 410.230 = (22)10.230 = 220.230 = 250
b, 925.274.813 = (32)25.(33)4.(34)3 = 350.312.312 = 374
c, 2550.1255 = (52)50.(53)5 = 5100.515 = 5115
d, 643.48.164 = (26)3.(22)8.(24)4 = 218.216.216 = 250
e, 38 : 36 = 32
210 : 83 = 210 : (23)3 = 210 : 29 = 2
127 : 67 = (12 : 6)7 = 27
@Dương Tuyết Mai
\(8^4.16^5=\left(2^3\right)^4.\left(2^4\right)^5=2^{12}.2^{20}=2^{12+20}=2^{32}.\)
\(27^4.81^{10}=\left(3^3\right)^4.\left(3^4\right)^{10}=3^{12}.3^{40}=3^{52}.\)
*)ta thấy 8<3 và 30 < 20 => \(8^{30}< 3^{20}\)
84.165=(23)4.(24)5=212.220=212+20=232.
274.8110=(33)4.(34)10=312.340=352.
8<3 và 30 < 20 =>
a: Ta có: \(81^{125}=3^{500}\)
\(27^{130}=3^{390}\)
mà 500>390
nên \(81^{125}>27^{130}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
320320 và 274274
Ta có: 274=(33)4=312<320274=(33)4=312<320
⇒320>274⇒320>274
225225 và 166166
Ta có:
166=(24)6=224<225166=(24)6=224<225
⇒225>224⇒225>224
534534 và 25.53025.530
Ta có:
25.530=532<53425.530=532<534
⇒534>25.530⇒534>25.530
10301030 và 450450
Ta có:
450=(22)50=2100=(210)10=102410450=(22)50=2100=(210)10=102410
1030=(103)10=100010<1024101030=(103)10=100010<102410
⇒1030<450
a) \(8^4.16^5\)
\(=\left(2^3\right)^4.\left(2^4\right)^5\\ =2^{3.4}.2^{4.5}\\ =2^{12}.2^{20}\\ =2^{12+20}\\ =2^{32}\)
b) \(5^{40}.125^2.625^3\)
\(=5^{40}.\left(5^3\right)^2.\left(5^4\right)^3\)
\(=5^{40}.5^{3.2}.5^{4.3}\)
\(=5^{40}.5^6.5^{12}\)
\(=5^{40+6+12}\)
\(=5^{58}\)
c) \(27^4.81^{10}\)
\(=\left(3^3\right)^4.\left(3^4\right)^{10}\)
\(=3^{3.4}.3^{4.10}\)
\(=3^{12}.3^{40}\)
\(=3^{52}\)
d) \(10^3.100^5.1000^4\)
\(=10^3.\left(10^2\right)^5.\left(10^3\right)^4\)
\(=10^3.10^{2.5}.10^{3.4}\)
\(=10^3.10^{10}.10^{12}\)
\(=10^{3+10+12}\)
\(=10^{25}\)
\(a,81^3=\left(9^2\right)^3=9^6\)
Vì \(9^{27}>9^6\) nên \(9^{27}>81^3\)
\(b,5^{14}=\left(5^2\right)^7=25^7\)
Vì \(25^7< 27^7\) nên \(5^{14}< 27^7\)
\(c,10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\) nên \(10^{30}< 2^{100}\)