so sánh
\(\frac{\sqrt{5}+1}{5\sqrt{10-2\sqrt{5}}}\) và \(\frac{\sqrt{3}}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B2:
3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)
\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có: 3√3=√32.3=√9.3=√2733=32.3=9.3=27
Vì √27>√1227>12 nên 3√3>√1233>12
Vậy 3√3>√1233>12.
b) Ta có: 3√5=√32.5=√4535=32.5=45
7=√72=√497=72=49
Vì √49>√4549>45 nên 7>3√57>35
Vậy 7>3√57>35.
c) Ta có: 13√51=√(13)2.51=√5191351=(13)2.51=519
15√150=√(15)2.150=√15025=√6=√6.99=√54915150=(15)2.150=15025=6=6.99=549
Vì √549>√519549>519 nên 13√51<15√1501351<15150
Vậy 13√51<15√1501351<15150.
d) Ta có: 12√6=√(12)2.6=√64126=(12)2.6=64
=√32=√3.12=√3.√12=32=3.12=3.12
Vì √3.√12<6√123.12<612 nên 12.√6<6√1212.6<612
Vậy 12√6<6√12126<612.
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé