K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:  \(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(4x+3\right)^2+8\left(x+3\right)^2\)

\(=24x^2+2-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)

\(=24x^2+2-32x^2-48x-18+8x^2+48x+72\)

=56

2: \(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)

\(=4x^3-3x-1-2x^3+12x^2-24x+16+x\left(9-3x-2x^2\right)-\left(3x-3\right)^2\)

\(=2x^3+12x^2-27x+15+9x-3x^2-2x^3-9x^2+18x-9\)

\(=6\)

23 tháng 7 2017

\(\left(2x+1\right)^2\left(x-1\right)-2\left(x-2\right)^3+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)

\(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(9+3x-6x-2x^2\right)-\left(9x^2-18x+9\right)\)

\(=4x^3+4x^2+x-4x^2-4x-1-2x^3+12x^2-24x+16+9x+3x^2-6x^2-2x^3-9x^2+18x+9\)

\(=\left(4x^3-2x^2-2x^3\right)+\left(4x^2-4x^2+12x^2+3x^2-6x^2-9x^2\right)+\left(x-4x-24x+9x+18x\right)+\left(-1+16+9\right)\)

\(=24\)

Vậy...........

Chúc bạn học tốt!!!

23 tháng 7 2017

\(\left(2x+1\right)^3-\left(2x-1\right)^3-2\left(4x+3\right)^2+8\left(x+3\right)^2\)

\(=8x^3+12x^2+6x+1-\left(8x^3-12x^2+6x-1\right)-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)

\(=8x^3+12x^2+1-8x^3+12x^2-6x+1-32x^2-48x-18+8x^2+48x+72\)

\(=56\)

Chúc bạn học tốt!!!

\(1,\left(2x+1\right)^3-\left(2x-1\right)^3-2\left(4x+3\right)^2+8\left(x+3\right)^2\)\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-32x^2-48x-18+8x^2+48x+72\)\(=56\)

vậy:.............

19 tháng 7 2017

Như thế này bn thấy rõ k

Những hằng đẳng thức đáng nhớ

20 tháng 7 2017

Trai Vô Đối cái phần 2 dòng 2 đoạn cuối là j vậy

27 tháng 8 2017

\(\left(x+1\right)^2+\left(x-1\right)^2-2\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1+x^2-2x+1-2x^2+2\)

\(=4\)

\(\Rightarrow\)Giá trị của biểu thức ko phụ thuộc vào biến

\(\Rightarrowđpcm\)

28 tháng 8 2017

cảm ơn nha

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

18 tháng 6 2017

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)

Đặt \(k=x^2-x+2\) thì biểu thức có dạng

k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)

c)làm tương tự câu a